Recent Progress in Stretchable Batteries for Wearable Electronics
Dr. Woo-Jin Song
Department of Chemistry Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorProf. Seungmin Yoo
Department of Chemical Engineering, Ulsan College, Ulsan, 44610 South Korea
These authors contributed equally to this work.
Search for more papers by this authorGyujin Song
School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology Eonyang-eup, Ulju-gun, Ulsan, 44919 Republic of Korea
Search for more papers by this authorSangyeop Lee
Department of Chemistry Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorMinsik Kong
Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorJaehyun Rim
Department of Chemistry Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Unyong Jeong
Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Soojin Park
Department of Chemistry Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorDr. Woo-Jin Song
Department of Chemistry Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorProf. Seungmin Yoo
Department of Chemical Engineering, Ulsan College, Ulsan, 44610 South Korea
These authors contributed equally to this work.
Search for more papers by this authorGyujin Song
School of Energy & Chemical Engineering, Ulsan National Institute of Science and Technology Eonyang-eup, Ulju-gun, Ulsan, 44919 Republic of Korea
Search for more papers by this authorSangyeop Lee
Department of Chemistry Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorMinsik Kong
Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorJaehyun Rim
Department of Chemistry Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Unyong Jeong
Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Soojin Park
Department of Chemistry Division of Advanced Materials Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Search for more papers by this authorGraphical Abstract
Go to the future! This review covers the latest advances in stretchable batteries, focusing on advanced materials and promising structural designs. The recent developments reported for state-of-the-art stretchable batteries are summarized and the future perspectives and remaining challenges toward the practical application of stretchable batteries with reliable mechanical robustness and stable electrochemical performance under physical deformations are discussed.
Abstract
With the rapidly approaching implementation of wearable electronic devices such as implantable devices, stretchable sensors, and healthcare devices, stretchable power sources have aroused worldwide attention as a key component in this emerging field. Among stretchable power sources, batteries, which store electrical energy through redox reactions during charge/discharge processes, are an attractive candidate because of their high energy density, high output voltage, and long-term stability. In recent years, extensive efforts have been devoted to developing new materials and innovative structural designs for stretchable batteries. This review covers the latest advances in stretchable batteries, focusing on advanced stretchable materials and their design strategies. First, we provide a detailed overview of the materials aspects of components in a stretchable battery, including electrode materials, solid-state electrolytes, and stretchable separator membranes. Second, we provide an overview on various structural engineering strategies to impart stretchability to batteries (i. e., wavy/buckling structures, island-bridge structures, and origami/kirigami structures). Third, we summarize recently reported developments in stretchable batteries based on various chemistries, including Li-based batteries, multivalent-based batteries, and metal-air batteries. Finally, we discuss the future perspectives and remaining challenges toward the practical application of stretchable batteries with reliable mechanical robustness and stable electrochemical performance under a physical strain.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aS. Choi, H. Lee, R. Ghaffari, T. Hyeon, D.-H. Kim, Adv. Mater. 2016, 28, 4203–4218;
- 1bS. I. Park, D. S. Brenner, G. Shin, C. D. Morgan, B. A. Copits, H. U. Chung, M. Y. Pullen, K. N. Noh, S. Davidson, S. J. Oh, Nat. Biotechnol. 2015, 33, 1280–1286.
- 2I. You, B. Kim, J. Park, K. Koh, S. Shin, S. Jung, U. Jeong, Adv. Mater. 2016, 28, 6359–6364.
- 3M. Ramuz, B. C. K. Tee, J. B. H. Tok, Z. Bao, Adv. Mater. 2012, 24, 3223–3227.
- 4
- 4aM. D. Dickey, Adv. Mater. 2017, 29, 1606425;
- 4bD. Rus, M. T. Tolley, Nature 2018, 521, 467–475.
- 5
- 5aJ. A. Rogers, T. Someya, Y. Huang, Science 2010, 327, 1603–1607;
- 5bJ. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho, S. Jung, Nat. Commun. 2019, 10, 54.
- 5cI. You, M. Kong, U. Jeong, Acc. Chem. Res. 2018, 52, 63–72.
- 6J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, Nature 2016, 539, 411–415.
- 7D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, J. A. Rogers, Science 2008, 320, 507–511.
- 8N. Matsuhisa, M. Kaltenbrunner, T. Yokota, H. Jinno, K. Kuribara, T. Sekitani, T. Someya, Nat. Commun. 2015, 6, 7461.
- 9F. Yi, H. Ren, J. Shan, X. Sun, D. Wei, Z. Liu, Chem. Soc. Rev. 2018, 47, 3152–3188.
- 10
- 10aC. Wang, C. Wang, Z. Huang, S. Xu, Adv. Mater. 2018, 30, 1801368;
- 10bX. Chu, H. Zhang, H. Su, F. Liu, B. Gu, H. Huang, H. Zhang, W. Deng, X. Zheng, W. Yang, Chem. Eng. J. 2018, 349, 168–175;
- 10cH. Zhang, H. Su, L. Zhang, B. Zhang, F. Chun, X. Chu, W. He, W. Yang, J. Power Sources 2016, 331, 332–339;
- 10dH. Huang, H. Su, H. Zhang, L. Xu, X. Chu, C. Hu, H. Liu, N. Chen, F. Liu, W. Deng, Adv. Electron. Mater. 2018, 4, 1800179.
- 11
- 11aT. An, W. Cheng, J. Mater. Chem. A 2018, 6, 15478–15494;
- 11bL. Li, Z. Lou, D. Chen, K. Jiang, W. Han, G. Shen, Small 2017, 1702829.
- 12
- 12aZ. F. Liu, S. Fang, F. A. Moura, J. N. Ding, N. Jiang, J. Di, M. Zhang, X. Lepró, D. S. Galvão, C. S. Haines, N. Y. Yuan, S. G. Yin, D. W. Lee, Science. 2014, 349, 400–404;
- 12bY. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C. Zhi, Nat. Commun. 2015, 6, 10310;
- 12cZ. Zhang, J. Deng, X. Li, Z. Yang, S. He, X. Chen, G. Guan, J. Ren, H. Peng, Adv. Mater. 2015, 27, 356–362;
- 12dC. Choi, J. H. Kim, H. J. Sim, J. Di, R. H. Baughman, S. J. Kim, Adv. Energy Mater. 2016, 1602021.
- 13K. K. Fu, J. Cheng, T. Li, L. Hu, ACS Energy Lett. 2016, 1, 1065–1079.
- 14
- 14aM. Winter, R. J. Brodd, Chem. Rev. 2004, 104, 4245–4269;
- 14bP. Verma, P. Maire, P. Novák, Electrochim. Acta 2010, 55, 6332–6341;
- 14cV. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci. 2011, 4, 3243–3262;
- 14dS.-Y. Lee, K.-H. Choi, W.-S. Choi, Y. H. Kwon, H.-R. Jung, H.-C. Shin, J. Y. Kim, Energy Environ. Sci. 2013, 6, 2414–2423.
- 15
- 15aP. G. Bruce, B. Scrosati, J.-M. Tarascon Angew. Chem. Int. Ed. 2008, 47, 2930–2946; Angew. Chem. 2008, 120, 2972–2989;
- 15bC. Liu, F. Li, L.-P. Ma, H.-M. Cheng, Adv. Mater. 2010, 22, E 28–E62.
- 16
- 16aC. Yan, P. S. Lee, Small 2014, 10, 3443–3460;
- 16bW. Liu, M.-S. Song, B. Kong, Y. Cui, Adv. Mater. 2017, 29, 1603436;
- 16cZ. Liu, F. Mo, H. Li, M. Zhu, Z. Wang, G. Liang, C. Zhi, Small Methods 2018, 2, 1800124.
- 17N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, G. M. Whitesides, Nature 1998, 393, 146–149.
- 18
- 18aM. Kaltenbrunner, G. Kettlgruber, C. Siket, R. Schwödiauer, S. Bauer, Adv. Mater. 2010, 22, 2065–2067;
- 18bA. M. Gaikwad, A. M. Zamarayeva, J. Rousseau, H. Chu, I. Derin, D. A. Steingart, Adv. Mater. 2012, 24, 5071–5076;
- 18cS. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J. A. Fan, Y. Su, J. Su, H. Zhang, Nat. Commun. 2013, 4, 1543;
- 18dJ. Ren, Y. Zhang, W. Bai, X. Chen, Z. Zhang, X. Fang, W. Weng, Y. Wang, H. Peng, Angew. Chem. Int. Ed. 2014, 53, 7864–7869; Angew. Chem. 2014, 126, 7998–8003;
- 18eZ. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C. K. Chan, H. Yu, H. Jiang, Nat. Commun. 2014, 5, 3140;
- 18fW. Weng, Q. Sun, Y. Zhang, S. He, Q. Wu, J. Deng, X. Fang, G. Guan, J. Ren, H. Peng, Adv. Mater. 2015, 27, 1363–1369;
- 18gZ. Song, X. Wang, C. Lv, Y. An, M. Liang, T. Ma, D. He, Y. J. Zheng, S. Q. Huang, H. Yu, Sci. Rep. 2015, 5, 10988.;
- 18hY. Sun, J. Lopez, H. W. Lee, N. Liu, G. Zheng, C. L. Wu, J. Sun, W. Liu, J. W. Chung, Z. Bao, Adv. Mater. 2016, 28, 2455–2461;
- 18iY. Xu, Y. Zhao, J. Ren, Y. Zhang, H. Peng, Angew. Chem. Int. Ed. 2016, 55, 7979–7982; Angew. Chem. 2016, 128, 8111–8114;
- 18jA. M. Zamarayeva, A. E. Ostfeld, M. Wang, J. K. Duey, I. Deckman, B. P. Lechêne, G. Davies, D. A. Steingart, A. C. Arias, Sci. Adv. 2017, 3, 1602051;
- 18kW. Liu, J. Chen, Z. Chen, K. Liu, G. Zhou, Y. Sun, M. S. Song, Z. Bao, Y. Cui, Adv. Energy Mater. 2017, 7, 1701076;
- 18lH. Li, Y. Ding, H. Ha, Y. Shi, L. Peng, X. Zhang, C. J. Ellison, G. Yu, Adv. Mater. 2017, 29, 1700898;
- 18mW.-J. Song, J. Park, D. H. Kim, S. Bae, M. J. Kwak, M. Shin, S. Kim, S. Choi, J. H. Jang, T. J. Shin, Adv. Energy Mater. 2018, 8, 1702478;
- 18nH. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Tang, Y. Wang, ACS Nano 2018, 12, 3140–3148;
- 18oK. Liu, B. Kong, W. Liu, Y. Sun, M. S. Song, J. Chen, Y. Liu, D. Lin, A. Pei, Y. Cui, Joule 2018, 2, 1857–1865.
- 19K.-H. Choi, D. B. Ahn, S.-Y. Lee, ACS Energy Lett. 2018, 3, 220–236.
- 20J. Ryu, T. Bok, S. Kim, S. Park, ChemNanoMat 2018, 4, 319–337.
- 21T. Li, Z. Huang, Z. Suo, S. P. Lacour, S. Wagner, Appl. Phys. Lett. 2004, 85, 3435–3437.
- 22
- 22aD. Qi, Z. Liu, Y. Liu, W. R. Leow, B. Zhu, H. Yang, J. Yu, W. Wang, H. Wang, S. Yin, Adv. Mater. 2015, 27, 5559–5566;
- 22bA. Zhou, R. Sim, Y. Luo, X. Gao, J. Mater. Chem. A 2017, 5, 21550–21559;
- 22cP. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y. D. Suh, S. E. Lee, J. Yeo, S. S. Lee, D. Lee, Adv. Funct. Mater. 2014, 24, 5671–5678.
- 23
- 23aM. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, Phys. Rev. Lett. 2000, 84, 5552–5555;
- 23bJ. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun'ko, Carbon 2006, 44, 1624–1652;
- 23cJ. P. Lu, Phys. Rev. Lett. 1997, 79, 1297–1300;
- 23dY. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828–4850.
- 24
- 24aC. Yu, C. Masarapu, J. Rong, B. Wei, H. Jiang, Adv. Mater. 2009, 21, 4793–4797;
- 24bZ. Yu, X. Niu, Z. Liu, Q. Pei, Adv. Mater. 2011, 23, 3989–3994;
- 24cM. S. Balogun, W. Qiu, F. Lyu, Y. Luo, H. Meng, J. Li, W. Mai, L. Mai, Y. Tong, Nano Energy 2016, 26, 446–455.
- 25
- 25aM. F. L. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Science 2013, 339, 535–540;
- 25bW. Weng, Q. Sun, Y. Zhang, H. Lin, J. Ren, X. Lu, M. Wang, H. Peng, Nano Lett. 2014, 14, 3432–3438.
- 26D.-Y. Cho, K. Eun, S.-H. Choa, H.-K. Kim, Carbon 2014, 66, 530–538.
- 27
- 27aS. Yao, Y. Zhu, Adv. Mater. 2015, 27, 1480–1511;
- 27bS. Park, M. Vosguerichian, Z. Bao, Nanoscale 2013, 5, 1727–1752.
- 28Y. Zhang, W. Bai, X. Cheng, J. Ren, W. Weng, P. Chen, X. Fang, Z. Zhang, H. Peng, Angew. Chem. Int. Ed. 2014, 53, 14564–14568; Angew. Chem. 2014, 126, 14792–14796.
- 29G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193–2203.
- 30M. F. El-Kady, Y. Shao, R. B. Kaner, Nat. Rev. Mater. 2016, 1, 16033.
- 31Q. Li, N. J. Bjerrum, J. Power Sources 2002, 110, 1–10.
- 32S. Jin, Y. Jiang, H. Ji, Y. Yu, Adv. Mater. 2018, 30, 1802014.
- 33
- 33aB. Long, L. Luo, H. Yang, M. S. Balogun, S. Song, Y. Tong, ChemistrySelect 2018, 3, 6965–6971;
- 33bB. Long, H. Yang, F. Wang, Y. Mao, M. S. Balogun, S. Song, Y. Tong, Electrochim. Acta 2018, 284, 271–278.
- 34M. S. Balogun, Y. Zeng, W. Qiu, Y. Luo, A. Onasanya, T. K. Olaniyi, Y. Tong, J. Mater. Chem. A 2016, 4, 9844–9849.
- 35
- 35aJ. Lee, J. Wu, M. Shi, J. Yoon, S.-I. Park, M. Li, Z. Liu, Y. Huang, J. A. Rogers, Adv. Mater. 2011, 23, 986–991;
- 35bJ. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, J. A. Rogers, Appl. Phys. Lett. 2008, 93, 013109.
- 36C. Wang, W. Zheng, Z. Yue, C. O. Too, G. G. Wallace, Adv. Mater. 2011, 23, 3580–3584.
- 37
- 37aD. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194–206;
- 37bX.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473.
- 38E. T. Thostenson, Z. Ren, T.-W. Chou, Compos. Sci. Technol. 2001, 61, 1899–1912.
- 39
- 39aS. V. Ahir, Y. Y. Huang, E. M. Terentjev, Polymer 2008, 49, 3841–3854;
- 39bY. Y. Huang, E. M. Terentjev, Polymer 2012, 4, 275–295;
- 39cA. V. Kyrylyuk, M. C. Hermant, T. Schilling, B. Klumperman, C. E. Koning, P. Van Der Schoot, Nat. Nanotechnol. 2011, 6, 364–369.
- 40C. Yan, X. Wang, M. Cui, J. Wang, W. Kang, C. Y. Foo, P. S. Lee, Adv. Energy Mater. 2014, 4, 1301396.
- 41L. V. Kayser, D. J. Lipomi, Adv. Mater. 2019, 31, 1806133.
- 42S. Pang, Y. Gao, S. Choi, Adv. Energy Mater. 2018, 8, 1702261.
- 43H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, Energy Environ. Sci. 2014, 7, 3857–3886.
- 44
- 44aJ.-C. Daigle, Y. Asakawa, A. Vijh, P. Hovington, M. Armand, K. Zaghib, J. Power Sources 2016, 332, 213–221;
- 44bJ. C. Jansen, K. Friess, G. Clarizia, J. Schauer, P. Izák, Macromolecules 2011, 44, 39–45;
- 44cJ. Y. Song, Y. Y. Wang, C. C. Wan, J. Power Sources 1999, 77, 183–197;
- 44dH. B. Youcef, O. Garcia-Calvo, N. Lago, S. Devaraj, M. Armand, Electrochim. Acta 2016, 220, 587–594.
- 45X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, Y. Chen, Adv. Funct. Mater. 2013, 23, 3353–3360.
- 46M. Kammoun, S. Berg, H. Ardebili, J. Power Sources 2016, 332, 406–412.
- 47Y. Wang, B. Li, J. Ji, A. Eyler, W. H. Zhong, Adv. Energy Mater. 2013, 3, 1557–1562.
- 48S. Choudhury, T. Saha, K. Naskar, M. Stamm, G. Heinrich, A. Das, Polymer 2017, 112, 447–456.
- 49
- 49aM. Egashira, H. Todo, N. Yoshimoto, M. Morita, J. Power Sources 2008, 178, 729–735;
- 49bA. M. Stephan, K. S. Nahm, Polymer 2006, 47, 5952–5964.
- 50J. Guan, Y. Li, J. Li, Ind. Eng. Chem. Res. 2017, 56, 12456–12463.
- 51
- 51aK.-H. Choi, S.-J. Cho, S.-H. Kim, Y. H. Kwon, J. Y. Kim, S.-Y. Lee, Adv. Funct. Mater. 2014, 24, 44–52;
- 51bP. Hu, J. Chai, Y. Duan, Z. Liu, G. Cui, L. Chen, J. Mater. Chem. A 2016, 4, 10070–10083.
- 52M. Xie, J. Wang, X. Wang, M. Yin, C. Wang, D. Chao, X. Liu, Macromol. Res. 2016, 24, 965–972.
- 53M. Shin, W.-J. Song, H. Bin Son, S. Yoo, S. Kim, G. Song, N. S. Choi, S. Park, Adv. Energy Mater. 2018, 8, 1801025.
- 54
- 54aJ. I. Kim, Y. Choi, K. Y. Chung, J. H. Park, Adv. Funct. Mater. 2017, 27, 1701768;
- 54bS. Yoo, J.-H. Kim, M. Shin, H. Park, J.-H. Kim, S.-Y. Lee, S. Park, Sci. Adv. 2015, 1, 1500101.
- 55
- 55aB. Wang, S. Bao, S. Vinnikova, P. Ghanta, S. Wang, NPJ Flex. Electron. 2017, 1, 5;
10.1038/s41528-017-0004-y Google Scholar
- 55bY. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, J. A. Rogers, Nat. Nanotechnol. 2006, 1, 201–207;
- 55cD.-Y. Khang, J. A. Rogers, H. H. Lee, Adv. Funct. Mater. 2009, 19, 1526–1536;
- 55dY. Liu, M. Pharr, G. A. Salvatore, ACS Nano 2017, 11, 9614–9635.
- 56D.-H. Kim, R. Ghaffari, N. Lu, J. A. Rogers, Annu. Rev. Biomed. Eng. 2012, 14, 113–128.
- 57J.-H. Ahn, J. H. Je, J. Phys. D: Appl. Phys. 2012, 45, 103001.
- 58D. Wirthl, R. Pichler, M. Drack, G. Kettlguber, R. Moser, R. Gerstmayr, F. Hartmann, E. Bradt, R. Kaltseis, C. M. Siket, S. E. Schausberger, S. Hild, S. Bauer, M. Kaltenbrunner, Sci. Adv. 2017, 3, 1700053.
- 59
- 59aH. W. Kim, T. Y. Kim, H. K. Park, I. You, J. Kwak, J. C. Kim, H. Hwang, H. S. Kim, U. Jeong, ACS Appl. Mater. Interfaces 2018, 10, 40141–40148;
- 59bY. Zhang, S. Xu, H. Fu, J. Lee, J. Su, K. C. Hwang, J. A. Rogers, Y. Huang, Soft Matter 2013, 9, 8062–8070.
- 60Y. Zhang, H. Fu, Y. Su, S. Xu, H. Cheng, J. A. Fan, K.-C. Hwang, J. A. Rogers, Y. Huang, Acta Mater. 2013, 61, 7816–7827.
- 61S. Qu, Z. Song, J. Liu, Y. Li, Y. Kou, C. Ma, X. Han, Y. Deng, N. Zhao, W. Hu, Nano Energy 2017, 39, 101–110.
- 62
- 62aQ. Cheng, Z. Song, T. Ma, B. B. Smith, R. Tang, H. Yu, H. Jiang, C. K. Chan, Nano Lett. 2013, 13, 4969–4974;
- 62bS. J. P. Callens, A. A. Zadpoor, Mater. Today 2018, 21, 241–264.
- 63L. Xu, T. C. Shyu, N. A. Kotov, ACS Nano 2017, 11, 7587–7599.
- 64
- 64aW.-J. Song, S. Yoo, J.-I. Lee, J.-G. Han, Y. Son, S.-I. Kim, M. Shin, S. Choi, J.-H. Jang, J. Cho, Chem. Asian J. 2016, 11, 3382–3388;
- 64bW.-J. Song, S. H. Joo, D. H. Kim, C. Hwang, G. Y. Jung, S. Bae, Y. Son, J. Cho, H. K. Song, S. K. Kwak, Nano Energy 2017, 32, 255–262;
- 64cH. Son, M.-Y. Jeong, J.-G. Han, K. Kim, K. H. Kim, K.-M. Jeong, N.-S. Choi, J. Power Sources 2018, 400, 147–156.
- 65
- 65aC. Hwang, W.-J. Song, J.-G. Han, S. Bae, G. Song, N.-S. Choi, S. Park, H.-K. Song, Adv. Mater. 2018, 30, 1705445;
- 65bT. Yoon, G. Song, A. M. Harzandi, M. Ha, S. Choi, S. Shadman, J. Ryu, T. Bok, S. Park, K. S. Kim, J. Mater. Chem. A 2018, 6, 15961–15967;
- 65cC. Kim, G. Song, L. Luo, J. Y. Cheong, S.-H. Cho, D. Kwon, S. Choi, J.-W. Jung, C.-M. Wang, I.-D. Kim, ACS Nano 2018, 12, 8169–8176;
- 65dS. Kalluri, M. Yoon, M. Jo, S. Park, S. Myeong, J. Kim, S. X. Dou, Z. Guo, J. Cho, Adv. Energy Mater. 2017, 7, 1601507;
- 65eG. Song, J. Ryu, J. C. Kim, J. H. Lee, S. Kim, C. Wang, S. K. Kwak, S. Park, Commun. Chem. 2018, 1, 42;
- 65fJ.-G. Han, J. B. Lee, A. Cha, T. K. Lee, W. Cho, S. Chae, S. J. Kang, S. K. Kwak, J. Cho, S. Y. Hong, N.-S. Choi, Energy Environ. Sci. 2018, 11, 1552–1562.
- 66W. Liu, Z. Chen, G. Zhou, Y. Sun, H. R. Lee, C. Liu, H. Yao, Z. Bao, Y. Cui, Adv. Mater. 2016, 28, 3578–3583.
- 67
- 67aK. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Sci. Adv. 2018, 4, eaas 9820;
- 67bQ. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, J. Power Sources 2012, 208, 210–224;
- 67cN. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252–264;
- 67dD. Larcher, J. M. Tarascon, Nat. Chem. 2015, 7, 19–29.
- 68S. Gong, W. Cheng, Adv. Energy Mater. 2017, 7, 1700648.
- 69
- 69aD.-Y. Wang, C.-Y. Wei, M.-C. Lin, C.-J. Pan, H.-L. Chou, H.-A. Chen, M. Gong, Y. Wu, C. Yuan, M. Angell, Nat. Commun. 2017, 8, 14283;
- 69bH. Li, C. Han, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Wang, Z. Liu, Z. Tang, Energy Environ. Sci. 2018, 11, 941–951;
- 69cW. Zhang, J. Mao, S. Li, Z. Chen, Z. Guo, J. Am. Chem. Soc. 2017, 139, 3316–3319;
- 69dH. Zhang, K. Ye, X. Huang, X. Wang, K. Cheng, X. Xiao, G. Wang, D. Cao, J. Power Sources 2017, 338, 136–144;
- 69eC. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H. N. Alshareef, Adv. Mater. 2018, 30, 1705580;
- 69fM. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, H.-M. Cheng, Nat. Chem. 2018, 10, 667–672;
- 69gW. Li, S. Hu, X. Luo, Z. Li, X. Sun, M. Li, F. Liu, Y. Yu, Adv. Mater. 2017, 29, 1605820.
- 70R. K. Guduru, J. C. Icaza, Nanomaterials 2016, 6, 41.
- 71
- 71aD. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, Nat. Energy 2016, 1, 16119;
- 71bR. Trócoli, F. La Mantia, ChemSusChem 2015, 8, 481–485;
- 71cM. Song, H. Tan, D. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564;
- 71dN. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Nat. Commun. 2017, 8, 405;
- 71eP. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, H. Pang, J. Mater. Chem. A 2017, 5, 7651–7666;
- 71fJ. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison, Science 2017, 356, 415–418.
- 72G. Kettlgruber, M. Kaltenbrunner, C. M. Siket, R. Moser, I. M. Graz, R. Schwödiauer, S. Bauer, J. Mater. Chem. A 2013, 1, 5505–5508.
- 73R. Kumar, J. Shin, L. Yin, J. M. You, Y. S. Meng, J. Wang, Adv. Energy Mater. 2017, 7, 1602096.
- 74
- 74aA. Konarov, N. Voronina, J. H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, ACS Energy Lett. 2018, 3, 2620–2640;
- 74bA. R. Mainar, E. Iruin, L. C. Colmenares, A. Kvasha, I. de Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, J. A. Blazquez, J. Energy Storage 2018, 15, 304–328;
- 74cY. Li, J. Fu, C. Zhong, T. Wu, Z. Chen, W. Hu, K. Amine, J. Lu, Adv. Energy Mater. 2018, 8, 1802605.
- 75L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu Science 2015, 350, 938–943.
- 76P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. Mai, ACS Appl. Mater. Interfaces 2017, 9, 42717–42722.
- 77S. Higashi, S. W. Lee, J. S. Lee, K. Takechi, Y. Cui, Nat. Commun. 2016, 7, 11801.
- 78W. Li, K. Wang, M. Zhou, H. Zhan, S. Cheng, K. Jiang, ACS Appl. Mater. Interfaces 2018, 10, 22059–22066.
- 79
- 79aY. Li, H. Dai, Chem. Soc. Rev. 2014, 43, 5257–5275;
- 79bM. A. Rahman, X. Wang, C. Wen, J. Electrochem. Soc. 2013, 160, A 1759–A1771;
- 79cJ.-S. Lee, S. T. Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34–50.
- 80F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172–2192.
- 81J. Park, M. Park, G. Nam, J.-S. Lee, J. Cho, Adv. Mater. 2015, 27, 1396–1401.
- 82
- 82aS. T. Senthilkumar, Y. Wang, H. Huang, J. Mater. Chem. A 2015, 3, 20863–20879;
- 82bR. Elazari, G. Salitra, A. Garsuch, A. Panchenko, D. Aurbach, Adv. Mater. 2011, 23, 5641–5644.
- 83W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, X. M. Tao, Adv. Mater. 2014, 26, 5310–5336.
- 84Y. Xu, Y. Zhang, Z. Guo, J. Ren, Y. Wang, H. Peng, Angew. Chem. Int. Ed. 2015, 54, 15390–15394; Angew. Chem. 2015, 127, 15610–15614.
- 85L. Wang, Y. Zhang, J. Pan, H. Peng, J. Mater. Chem. A 2016, 4, 13419–13424.
- 86Y. Zhang, W. Bai, J. Ren, W. Weng, H. Lin, Z. Zhang, H. Peng, J. Mater. Chem. A 2014, 2, 11054–11059.
- 87W. Song, S. Lee, G. Song, S. Park, ACS Energy Lett. 2018, 4, 177–186.