Toward High Energy Density Aqueous Zinc-Ion Batteries: Recent Progress and Future Perspectives
Sangyeop Lee
Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Contribution: Conceptualization (equal), Writing - original draft (equal)
Search for more papers by this authorJongha Hwang
Department of Polymer Science and Engineering, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorCorresponding Author
Prof. Woo-Jin Song
Department of Polymer Science and Engineering, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
Contribution: Conceptualization (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Soojin Park
Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Contribution: Conceptualization (lead), Project administration (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorSangyeop Lee
Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Contribution: Conceptualization (equal), Writing - original draft (equal)
Search for more papers by this authorJongha Hwang
Department of Polymer Science and Engineering, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
Contribution: Investigation (equal), Writing - original draft (equal)
Search for more papers by this authorCorresponding Author
Prof. Woo-Jin Song
Department of Polymer Science and Engineering, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
Contribution: Conceptualization (lead), Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Soojin Park
Division of Advanced Materials Science and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Cheongam-ro, Nam-gu, Pohang, 37673 Republic of Korea
Contribution: Conceptualization (lead), Project administration (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
Towards high-voltage ZIBs: Aqueous zinc-ion batteries (ZIBs) are promising alternatives for conventional batteries due to their safety, economic benefits, and facile manufacturing processes. However, they show insufficient energy density related with low operating potential which restricts practical utilization in turn. In this perspective, we provide as-reported strategies to develop high-voltage aqueous ZIBs and propose guidelines to attain advanced zinc-based system.
Abstract
Aqueous zinc-ion batteries (ZIBs) are promising next-generation battery system which can mitigate the prevailing issues on the conventional lithium-ion batteries. However, insufficient energy density with low operating voltage prevents the practical utilization of the aqueous system. Notably, aqueous ZIBs suffer from electrolyte decomposition due to its narrow electrochemical stability window (ESW) for 1.23 V. Also, studies on cathode active materials that store charge at an elevated voltage region is still in the initial stage. In this perspective, we cover the recent strategies for developing high-voltage aqueous ZIBs. First, electrolyte designs for expanding the ESW of an aqueous electrolyte are introduced based on their characterization, materials, and working mechanisms. Next, we propose the cathode active materials with high-working voltage. Furthermore, studies on zinc anodes are also briefly presented. Lastly, we summarize the as-reported strategies and provide insight for developing future ZIBs.
Conflict of interest
The authors declare no conflict of interest.
References
- 1A. Hauch, R. Kungas, P. Blennow, A. B. Hansen, J. B. Hanse, B. V. Mathiesen, M. B. Mogensen, Science 2020, 370, 6513.
- 2G. Luderer, S. Madeddu, L. Merfort, F. Ueckerdt, M. Pehl, R. Pietzcker, M. Rottoli, F. Schreyer, N. Bauer, L. Baumstark, C. Bertram, A. Dirnaichner, F. Humpenoder, A. Levesque, A. Popp, R. Rodrigues, J. Strefler, E. Kriegler, Nat. Energy 2022, 7, 32–42.
- 3B. K. Sovacool, P. Schmid, A. Stirling, G. Walter, G. Mackerron, Nat. Energy 2020, 5, 928–935.
- 4X. Guo, Y. Ding, G. Yu, Adv. Mater. 2021, 33, 2100052.
- 5H. S. Hirsh, Y. Li, D. H. S. Tan, M. Zhang, E. Zhao, Y. S. Meng, Adv. Energy Mater. 2020, 10, 2001274.
- 6F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 2020, 49, 1569–1614.
- 7A. Manthiram, Nat. Commun. 2020, 11, 1550.
- 8Y. Shen, B. Liu, X. Liu, J. Liu, J. Ding, C. Zhong, W. Hu, Energy Storage Mater. 2021, 34, 461–474.
- 9L. Yuna, J. Hao, C. C. Kao, C. Wu, H. K. Liu, S. X. Dou, S. Z. Qiao, Energy Environ. Sci. 2021, 14, 5669–5689.
- 10T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou, S. Liang, Energy Environ. Sci. 2020, 13, 4625–4665.
- 11X. Jia, C. Liu, Z. G. Neale, J. Yang, G. Cao, Chem. Rev. 2020, 120, 7795–7866.
- 12Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Angew. Chem. Int. Ed. 2020, 59, 13180–13191;
Angew. Chem. 2020, 132, 13280–13291.
10.1002/ange.202000162 Google Scholar
- 13B. Tang, L. Shan, S. Liang, J. Zhou, Energy Environ. Sci. 2019, 12, 3288–3304.
- 14Y. Yu, J. Xie, H. Zhang, R. Qin, X. Liu, X. Lu, Small Sci. 2021, 1, 2000066.
- 15Y. Li, Z. Wang, Y. Cai, M. E. Pam, Y. Yang, D. Zhang, Y. Wang, S. Huang, Energy Environ. Mater. 2022, 0, 1–29.
- 16Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun, Z. Zhou, B. He, P. Man, L. Xie, L. Kang, X. Wang, J. Yang, T. Zhang, P. P. Shum, Q. Li, Y. Yao, L. Wei, Nano Lett. 2019, 19, 6, 4035–4042.
- 17V. Soundharrajan, B. Sambandam, S. Kim, V. Mathew, J. Jo, S. Kim, J. Lee, S. Islam, K. Kim, Y. K. Sun J Kim, ACS Energy Lett. 2018, 3, 1998–2004.
- 18H. Cui, T. Wang, Z. Huang, G. Liang, Z. Chen, A. Chen, D. Wang, Q. Yang, H. Hong, J. Fan, C. Zhi, Angew. Chem. Int. Ed. 2022, 61, e202203453.
- 19Q. Guo, K. I. Kim, H. Jiang, L. Zhang, C. Zhang, D. Yu, Q. Ni, X. Chang, T. Chen, H. Xia, X. Ji, Adv. Funct. Mater. 2020, 20, 2002825.
- 20Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, Energy Environ. Sci. 2021, 14, 3609–3620.
- 21P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu, Y. Wu, T. V. Ree, Adv. Sci. 2021, 8, 2100309.
- 22J. Tan, J. Liu, Energy Environ. Mater. 2021, 4, 302–306.
- 23Y. Wang, Z. Wang, F. Yang, S. Liu, S. Zhang, J. Mao, Z. Guo, Small 2022, 2107033.
- 24S. Guoa, L. Qin, T. Zhang, M. Zhoua, J. Zhoua, G. Fang S Liang, Energy Storage Mater. 2021, 34, 545–562.
- 25H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Angew. Chem. Int. Ed. 2021, 60, 598–616;
Angew. Chem. 2021, 133, 608–626.
10.1002/ange.202004433 Google Scholar
- 26Y. Li, H. Wang, C. Priest, S. Li, P. Xu, G. Wu, Adv. Mater. 2021, 33, 2000381.
- 27Z. Chen, Y. Tang, X. Du, B. Chen, G. Lu, X. Han, Y. Zhang, W. Yang, P. Han, J. Zhao, C. Cui, Angew. Chem. Int. Ed. 2020, 59, 21769–21777;
Angew. Chem. 2020, 132, 21953–21961.
10.1002/ange.202010423 Google Scholar
- 28L. Ma, N. Li, C. Long, B. Dong, D. Fang, Z. Liu, Y. Zhao, X. Li, J. Fan, S. Chen, S. Zhang, C. Zhi, Adv. Funct. Mater. 2019, 29, 1906142.
- 29G. Wang, B. Kohn, U. Scheler, F. Wang, S. Oswald, M. Loffler, D. Tan, P. Zhang, J. Zhang, X. Feng, Adv. Mater. 2020, 32, 1905681.
- 30Z. Yu, L. Cao, H. Liu, D. W. Wang, Energy Storage Mater. 2021, 43, 158–164.
- 31F. Yu, L. Pang, X. Wang, E. R. Waclawik, F. Wang K Ostrikov, H. Wang, Energy Storage Mater. 2019, 19, 56–61.
- 32Z. Huang, T. Wang, X. Li, H. Cui, C. Liang, Q. Yang, Z. Chen, A. Chen, Y. Guo, J. Fan, C. Zhi, Adv. Mater. 2022, 34, 2106180.
- 33N. Li, G. Li, C. Li, H. Yang, G. Qin, X. Sun, F. Li, H. M. Cheng, ACS Appl. Mater. Interfaces 2020, 12, 13790–13796.
- 34L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang, J. A. Zapien, S. Chen, J. Fan, C. Zhi, Adv. Mater. 2020, 32, 1908121.
- 35N. Zhang, Y. Dong, Y. Wang, Y. Wang, J. Li, J. Xu, Y. Liu, L. Jiao, f. Cheng, ACS Appl. Mater. Interfaces 2019, 11, 36, 32978–32986.
- 36S. Chen, R. Lan, J. Humphreys, S. Tao, Energy Storage Mater. 2020, 28, 205–215.
- 37Z. A. Zafar, G. Abbas, K. Knizek, M. Silhavik, P. Kumar, P. Jiricek, J. Houdkova, O. Frank, J. Cervenka, J. Mater. Chem. A. 2022, 10, 2064.
- 38J. Zhao, Y. Li, X. Peng, S. Dong, J. Ma, G. Cui, L. Chen, Electrochem. Commun. 2016, 69, 6–10.
- 39X. Lin, G. Zhou, J. Liu, M. J. Robson, J. Yu, Y. Wang, Z. Zhang, S. C. T. Kwok, F. Ciucci, Adv. Funct. Mater. 2021, 31, 2105717.
- 40W. Pan, Y. Wang, X. Zhao, Y. Zhao, X. Liu, J. Xuan, H. Wang, D. Y. C. Leung, Adv. Funct. Mater. 2021, 31, 2008783.
- 41J. Zhang, J. Zhao, H. Du, Z. Zhang, S. Wang, G. Cui, Electrochim. Acta 2018, 280, 108–113.
- 42X. Wu, L. Fan, Y. Qiu, M. Wang, J. Cheng, B. Guan, Z. Guo, N. Zhang, K. Sun, ChemSusChem 2018, 11, 3345–3351.
- 43X. Luo, X. Lu, G. Zhou, X. Zhao, Y. Ouyang, X. Zhu, Y. E. Miao, T. Liu, ACS Appl. Mater. Interfaces 2018, 10, 42198–42206.
- 44F. Wan, J. Zhu, S. Huang, Z. Niu, Batteries & Supercaps 2020, 3, 323–330.
- 45C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong, Y. Li, C. Sun, X. Han, Y. Deng, N. Zhao, W. Hu, Nat. Energy 2020, 5, 440–449.
- 46S. P. Ong, O. Andreussi, Y. Wu, N. Marzari, G. Ceder, Chem. Mater. 2022, 23, 2979–2986.
- 47H. Maeshima, H. Moriwake, A. Kuwabara, C. A. J. Fisher, J. Electrochem. Soc. 2010, 157 (6), 696–701.
- 48Y. H. Tian, G. S. Goff, W. H. Runde, E. R. Batista, J. Phys. Chem. B 2012, 116, 11943–11952.
- 49L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 2015, 350 (6263), 938–943.
- 50L. Jiang, L. Liu, J. Yue, Q. Zhang, A. Zhou, O. Borodin, L. Suo, H. Li, L. Chen, K. Xu, Y. S. Hu, Adv. Mater. 2020, 32, 1904427.
- 51P. Kulkarni, D. Ghosh, R. G. Balakrishna, Sustain. Energy Fuels 2021, 5, 1619.
- 52S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Adv. Mater. 2022, 34, 2110140.
- 53L. Han, H. Huang, X. Fu, J. Li, Z. Yang, X. Liu, L. Pan, M. Xu, Chem. Eng. J. 2020, 392, 123733.
- 54S. Wei, S. Chen, X. Su, Z. Qi, C. Wang, B. Ganguli, P. Zhang, K. Zhu, Y. Cao, Q. He, D. Cao, X. Guo, W. Wen, X. Wu, P. M. Ajayan, L. Song, Energy Environ. Sci. 2021, 14, 3954–3964.
- 55Y. Gao, G. Li, F. Wang, J. Chu, P. Yu, B. Wang, H. Zhan, Z. Song, Energy Storage Mater. 2021, 40, 31–40.
- 56W. Shi, B. Yin, Y. Yang, M. B. Sullivan, J. Wang, Y. W. Zhang, Z. G. Yu, W. S. V. Lee, J. Xue, ACS Nano 2021, 15, 1273–1281.
- 57J. Yan, E. H. Ang, Y. Yang, Y. Zhang, M. Ye, W. Du, C. C. Li, Adv. Funct. Mater. 2021, 31, 2010213.
- 58Z. Liu, Q. Yang, D. Wang, G. Liang, Y. Zhu, F. Mo, Z. Huang, X. Li, L. Ma, T. Tang, Z. Lu, C. Zhi, Adv. Energy Mater. 2019, 9, 1902473.
- 59Q. Liu, H. Wang, C. Jiang, Y. Tang, Energy Storage Mater. 2019, 23, 566–586.
- 60Z. L. Xu, J. Park, J. Wang, H. Moon, G. Yoon, J. Lim, Y. J. Ko, S. P. Cho, S. Y. Lee, K. Kang, Nat. Commun. 2021, 12, 3369.
- 61F. Wang, L. E. Blanc, Q. Li, A. Faraone, X. Ji, H. H. C. Mayer, R. L. Paul, J. A. Dura, E. Hu, K. Xu, L. F. Nazar, C. Wang, Adv. Energy Mater. 2021, 11, 2102016.
- 62C. Zhang, W. Ma, C. Han, L. W. Luo, A. Daniyar, S. Xiang, X. Wu, X. Ji, J. X. Jiang, Energy Environ. Sci. 2021, 14, 462–472.
- 63L. Zhang, H. Wang, X. Zhang, Y. Tang, Adv. Funct. Mater. 2021, 31, 2010958.
- 64M. Wang, Y. Tang, Adv. Energy Mater. 2018, 8, 1703320.
- 65T. Placke, O. Fromm, S. F. Lux, P. Bieker, S. Rothermel, H. W. Meyer, S. Passerini, M. Winter, J. Electrochem. Soc. 2012, 159 (11), 1755–1765.
- 66I. A. R. Perez, L. Zhang, J. M. Wrogemann, D. M. Driscoll, M. L. Sushko, K. S. Han, J. L. Fulton, M. H. Engelhard, M. Balasubramanian, V. V. Viswanathan, V. Murugesan, X. Li, D. Reed, V. Sprenkle, M. Winter, T. Placke, Adv. Energy Mater. 2020, 10, 2001256.
- 67L. Jiang, L. Liu, J. Yue, Q. Zhang, A. Zhou, O. Borodin, L. Suo, H. Li, L. Chen, K. Xu, Y. S. Hu, Adv. Mater. 2020, 32, 1904427.
- 68L. Ma, S. Chen, C. Long, X. Li, Y. Zhao, Z. Liu, Z. Huang, B. Dong, J. A. Zapien, C. Zhi, Adv. Energy Mater. 2019, 9, 1902446.
- 69C. Li, W. Yuan, C. Li, H. Wang, L. Wang, Y. Liu, N. Zhang, Chem. Commun. 2021, 57, 4319–4322.
- 70C. Li, J. Wu, F. Ma, Y. Chen, L. Fu, Y. Zhu, Y. Zhang, P. Wang, Y. Wu, W. Huang, ACS Appl. Energ. Mater. 2019, 2, 10, 6984–6989.
- 71Z. Chen, T. Liu, Z. Zhao, Z. Zhang, X. Han, P. Han, J. Li, J. Wang, J. Li, S. Huang, X. Zhou, J. Zhao, G. Cui, J. Power Sources 2020, 457, 227994.
- 72H. Zhang, X. Liu, B. Qin, S. Passerini, J. Power Sources 2020, 449, 227594.
- 73Y. Luo, F. Zheng, L. Liu, K. Lei, X. Hou, G. Xu, H. Meng, J. Shi, F. Li, ChemSusChem 2020, 13, 2239–2244.
- 74X. Zhang, J. He, L. Zhou, H. Zhang, Q. Wang, B. Huang, X. Lu, Y. Tong, C. Wang, Adv. Funct. Mater. 2021, 31, 2100443.
- 75Y. Xu, P. Cai, K. Chen, Y. Ding, L. Chen, W. Chen, Z. Wen, Angew. Chem. Int. Ed. 2020, 59, 23593–23597;
Angew. Chem. 2020, 132, 23799–23803.
10.1002/ange.202012017 Google Scholar
- 76Y. Zou, T. Lit, Q. Du, Y. Li, H. Yi, X. Zhou, Z. Li, L. Gao, L. Zhang, X. Liang, Nat. Commun. 2021, 12, 170.
- 77J. Hao, X. Li, X. Zeng, D. Li, J. Mao, Z. Guo, Energy Environ. Sci. 2020, 13, 3917–3949.
- 78H. Jia, Z. Wang, B. Tawiah, Y. Wang, C. Y. Chan, B. Fei, Nano Energy 2020, 70, 104523.
- 79J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Adv. Funct. Mater. 2020, 30, 2001263.
- 80K. Zhao, C. Wang, Y. Yu, M. Yan, Q. Wei, P. He, Y. Dong, Z. Zhang, X. Wang, L. Mai, Adv. Mater. Interfaces 2018, 5, 1800848.
- 81P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, J. Zhang, Adv. Funct. Mater. 2020, 30, 1908528.
- 82H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Adv. Energy Mater. 2021, 11, 2100186.
- 83B. Liu, S. Wang, Z. Wang, H. Lei, Z. Chen, W. Mai, Small 2020, 16, 2001323.
- 84N. Wang, H. Wan, J. Duan, X. Wang, L. Tao, J. Zhang, H. Wang, Mater. Today 2021, 11, 100149.
- 85J. Song, K. Xu, N. Liu, D. Reed, X. Li, Mater. Today 2021, 45, 191–212.