A Novel High-Performance Electrolyte for Extreme Fast Charging in Pilot Scale Lithium-Ion Pouch Cells
Corresponding Author
Dr. Zhijia Du
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorDr. Zhenzhen Yang
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorDr. Runming Tao
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorVadim Shipitsyn
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, 28223 Charlotte, NC, USA
Battery Complexity, Autonomous Vehicle and Electrification (BATT CAVE) Research Center, The University of North Carolina at Charlotte, 28223 Charlotte, NC, USA
Search for more papers by this authorDr. Xianyang Wu
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorDavid C. Robertson
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorKelsey M. Livingston
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorShae Hagler
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorJames Kwon
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorProf. Dr. Lin Ma
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, 28223 Charlotte, NC, USA
Battery Complexity, Autonomous Vehicle and Electrification (BATT CAVE) Research Center, The University of North Carolina at Charlotte, 28223 Charlotte, NC, USA
Search for more papers by this authorDr. Ira D. Bloom
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorDr. Brian J. Ingram
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorCorresponding Author
Dr. Zhijia Du
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorDr. Zhenzhen Yang
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorDr. Runming Tao
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorVadim Shipitsyn
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, 28223 Charlotte, NC, USA
Battery Complexity, Autonomous Vehicle and Electrification (BATT CAVE) Research Center, The University of North Carolina at Charlotte, 28223 Charlotte, NC, USA
Search for more papers by this authorDr. Xianyang Wu
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorDavid C. Robertson
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorKelsey M. Livingston
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorShae Hagler
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorJames Kwon
Electrification and Energy Infrastructure Division, Oak Ridge National Laboratory, 37830 Oak Ridge, TN, USA
Search for more papers by this authorProf. Dr. Lin Ma
Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, 28223 Charlotte, NC, USA
Battery Complexity, Autonomous Vehicle and Electrification (BATT CAVE) Research Center, The University of North Carolina at Charlotte, 28223 Charlotte, NC, USA
Search for more papers by this authorDr. Ira D. Bloom
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorDr. Brian J. Ingram
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Ave, 60439 Lemont, IL, USA
Search for more papers by this authorGraphical Abstract
Abstract
Realizing extreme fast charging (XFC) in lithium-ion batteries for electric vehicles is still challenging due to the insufficient lithium-ion transport kinetics, especially in the electrolyte. Herein, a novel high-performance electrolyte (HPE) consisting of lithium bis(fluorosulfonyl)imide (LiFSI), lithium hexafluorophosphate (LiPF6) and carbonates is proposed and tested in pilot-scale, 2-Ah pouch cells. Moreover, the origin of improved electrochemical performance is comprehensively studied via various characterizations, suggesting that the proposed HPE exhibits high ionic conductivity and excellent electrochemical stability at high charging rate of 6-C. Therefore, the HPE-based pouch cells deliver improved discharge specific capacity and excellent long-term cyclability up to 1500 cycles under XFC conditions, which is superior to the conventional state-of-the-art baseline electrolyte.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
batt202300292-sup-0001-misc_information.pdf769.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Goodenough, Nat. Electron. 2018, 1, 204.
- 2D. Howell, S. Boyd, B. Cunningham, S. Gillard, L. Slezak, S. Ahmed, I. Bloom, A. Burnham, K. Hardy, A. N. Jansen, P. A. Nelson, D. C. Robertson, T. Stephens, R. Vijayagopal, R. B. Carlson, F. Dias, E. J. Dufek, C. J. Michelbacher, M. Mohanpurkar, D. Scoffield, M. Shirk, T. Tanim, M. Keyser, C. Kreuzer, O. Li, A. Markel, A. Meintz, A. Pesaran, S. Santhanagopalan, K. Smith, E. Wood, J. Zhang, 2017. DOE report. https://energy.gov/sites/prod/files/2017/10/f38/XFC Technology Gap Assessment Report_FINAL_10202017.pdf.
- 3D. L. Wood, J. Li, C. Daniel, J. Power Sources 2015, 275, 234.
- 4K. G. Gallagher, S. E. Trask, C. Bauer, T. Woehrle, S. F. Lux, M. Tschech, P. Lamp, B. J. Polzin, S. Ha, B. Long, Q. Wu, W. Lu, D. W. Dees, A. N. Jansen, J. Electrochem. Soc. 2016, 163, A138.
- 5S. Ahmed, I. Bloom, A. N. Jansen, T. Tanim, E. J. Dufek, A. Pesaran, A. Burnham, R. B. Carlson, F. Dias, K. Hardy, M. Keyser, C. Kreuzer, A. Markel, A. Meintz, C. Michelbacher, M. Mohanpurkar, P. A. Nelson, D. C. Robertson, D. Scoffield, M. Shirk, T. Stephens, R. Vijayagopal, J. Zhang, J. Power Sources 2017, 367, 250.
- 6H. J. Chang, A. J. Ilott, N. M. Trease, M. Mohammadi, A. Jerschow, C. P. Grey, J. Am. Chem. Soc. 2015, 137, 15209.
- 7J. H. Cheng, A. A. Assegie, C. J. Huang, M. H. Lin, A. M. Tripathi, C. C. Wang, M. T. Tang, Y. F. Song, W. N. Su, B. J. Hwang, J. Phys. Chem. C 2017, 121, 7761.
- 8F. Orsini, A. Du Pasquier, B. Beaudoin, J. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, P. Notten, J. Power Sources 1998, 76, 19.
- 9J. N. Chazalviel, Phys. Rev. A 1990, 42, 7355.
- 10Z. Du, D. L. Wood, I. Belharouak, Electrochem. Commun. 2019, 103, 109.
- 11Z. Yang, H. Charalambous, Y. Lin, S. E. Trask, L. Yu, J. Wen, A. Jansen, Y. Tsai, K. M. Wiaderek, Y. Ren, I. Bloom, J. Power Sources 2022, 521, 230961.
- 12X. G. Yang, C. Y. Wang, J. Power Sources 2018, 402, 489.
- 13X.-G. Yang, G. Zhang, S. Ge, C.-Y. Wang, Proc. Nat. Acad. Sci. 2018, 115, 7266.
- 14X. Wu, Z. Du, Electrochem. Commun. 2021, 129, 107088.
- 15X. Wu, L. Ma, J. Liu, K. Zhao, D. L. Wood, Z. Du, J. Power Sources 2022, 545, 231863.
- 16A. M. Colclasure, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, K. Smith, J. Electrochem. Soc. 2019, 166, A1412.
- 17A. M. Colclasure, T. R. Tanim, A. N. Jansen, S. E. Trask, A. R. Dunlop, B. J. Polzin, I. Bloom, D. Robertson, L. R. Flores, M. Evans, E. J. Dufek, K. Smith, Electrochim. Acta 2020, 337, 135854.
- 18H. B. Han, S. S. Zhou, D. J. Zhang, S. W. Feng, L. F. Li, K. Liu, W. F. Feng, J. Nie, H. Li, X. J. Huang, M. Armand, Z. Bin Zhou, J. Power Sources 2011, 196, 3623.
- 19D. Y. Wang, A. Xiao, L. Wells, J. R. Dahn, J. Electrochem. Soc. 2015, 162, A169.
- 20T. B. Reddy, in Linden's Handbook of Batteries, Fourth Edition, 2002.
- 21V. Müller, R. Bernhard, J. Wegener, J. Pfeiffer, S. Rössler, R. G. Scurtu, M. Memm, M. A. Danzer, M. Wohlfahrt-Mehrens, Energy Technol. 2020, 8, 2000217.
- 22S. Chen, C. Niu, H. Lee, Q. Li, L. Yu, W. Xu, J.-G. Zhang, E. J. Dufek, M. S. Whittingham, S. Meng, J. Xiao, J. Liu, Joule 2019, 3, 1094.
- 23S. E. Trask, Y. Li, J. J. Kubal, M. Bettge, B. J. Polzin, Y. Zhu, A. N. Jansen, D. P. Abraham, J. Power Sources 2014, 259, 233–244.
- 24K. Xu, Chem. Rev. 2014, 114, 11503.
- 25S. Huang, X. Wu, G. M. Cavalheiro, X. Du, B. Liu, Z. Du, G. Zhang, J. Electrochem. Soc. 2019, 166, 3254.
- 26S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, Carbon 2016, 105, 52.
- 27K. Edström, T. Gustafsson, J. O. Thomas, Electrochim. Acta 2004, 50, 397.
- 28G. Zhuang, Y. Chen, P. N. Ross, Langmuir 1999, 15, 1470.
- 29R. Dedryvère, H. Martinez, S. Leroy, D. Lemordant, F. Bonhomme, P. Biensan, D. Gonbeau, J. Power Sources 2007, 174, 462.
- 30R. Tao, T. Zhang, S. Tan, C. J. Jafta, C. Li, J. Liang, X. Sun, T. Wang, J. Fan, Z. Lu, C. A. Bridges, X. Suo, C. Do-Thanh, S. Dai, Adv. Energy Mater. 2022, 12, 2200519.
- 31H. Lyu, J. Li, T. Wang, B. P. Thapaliya, S. Men, C. J. Jafta, R. Tao, X.-G. Sun, S. Dai, ACS Appl. Energ. Mater. 2020, 3, 5657.
- 32T. Hu, J. Tian, F. Dai, X. Wang, R. Wen, S. Xu, J. Am. Chem. Soc. 2023, 145, 1327.
- 33S. Chen, R. Tao, J. Tu, P. Guo, G. Yang, W. Wang, J. Liang, S. Lu, Adv. Funct. Mater. 2021, 31, 2101199.
- 34R. Tao, G. Yang, E. C. Self, J. Liang, J. R. Dunlap, S. Men, C. Do-Thanh, J. Liu, Y. Zhang, S. Zhao, H. Lyu, A. P. Sokolov, J. Nanda, X. Sun, S. Dai, Small 2020, 16, 2001884.
- 35L. Madec, R. Petibon, K. Tasaki, J. Xia, J.-P. Sun, I. G. Hill, J. R. Dahn, Phys. Chem. Chem. Phys. 2015, 17, 27062.
- 36C. Guo, Y. Guo, R. Tao, X. Liao, K. Du, H. Zou, W. Zhang, J. Liang, D. Wang, X. G. Sun, S. Y. Lu, Nano Energy 2022, 96, 107121.
- 37K. Du, R. Tao, C. Guo, H. Li, X. Liu, P. Guo, D. Wang, J. Liang, J. Li, S. Dai, X. G. Sun, Nano Energy 2022, 103, 107862.
- 38J. Arai, A. Matsuo, T. Fujisaki, K. Ozawa, J. Power Sources 2009, 193, 851.
- 39J. Kim, H. Kim, J. H. Ryu, S. M. Oh, J. Electrochem. Soc. 2020, 167, 080529.
- 40L. Li, S. Zhou, H. Han, H. Li, J. Nie, M. Armand, Z. Zhou, X. Huang, J. Electrochem. Soc. 2011, 158, A74.
- 41J. P. Christophersen, DOE Rep. 2015. https://inldigitallibrary.inl.gov/sites/sti/sti/6492291.pdf.