Aqueous Acidic Pectin-Based Solution as Electrolyte and Pretreatment Solution for Zinc Ion Battery Anodes
Jooyoung Jang
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673 Pohang, Gyeongbuk, Republic of Korea
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorWon-Gwang Lim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, 34141 Daejeon, Republic of Korea
Contribution: Data curation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Changshin Jo
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673 Pohang, Gyeongbuk, Republic of Korea
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk Republic of Korea
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorJooyoung Jang
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673 Pohang, Gyeongbuk, Republic of Korea
Contribution: Conceptualization (lead), Data curation (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorWon-Gwang Lim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, 34141 Daejeon, Republic of Korea
Contribution: Data curation (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Changshin Jo
Graduate Institute of Ferrous & Eco Materials Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, 37673 Pohang, Gyeongbuk, Republic of Korea
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk Republic of Korea
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
We utilize an acidic pectin-based ZnSO4 (ZSP) solution in aqueous Zn-ion batteries in two ways: as an electrolyte and as a pretreatment solution for the Zn anode. The ZSP electrolyte effectively prevents inactive byproduct formation, ensuring stable cycling. Immersing Zn foil in the acidic ZSP solution removes the uneven layer from the Zn anode surface.
Abstract
While considerable progress has been achieved in aqueous mildly acidic Zn-ion batteries (AZIBs), the development of metallic Zn anodes remains challenging due to dendritic growth and side reactions on the Zn surface in mildly acidic aqueous environments. Herein, we utilize pectin in two ways: firstly, as an additive for the acidic ZnSO4 electrolyte with pectin (referred to as ZSP); and secondly, as a component in the pretreatment solution for Zn electrode. The ZSP electrolyte can prevent the formation of inactive Zn4(OH)6(SO4) ⋅ 5H2O byproduct on Zn electrode and enable stable cycling under challenging conditions at 10 mA h cm−2. Interestingly, the immersion of the Zn foil in the acidic pectin solution resulted in the uniform removal of the bumpy oxides/carbonates layer on the Zn metal surface. The cells with treated Zn electrode in pectin solution exhibited lower overpotentials and effectively inhibited cell failure. Our findings indicate that utilizing an organic-based acidic ZnSO4 electrolyte shows promise as both an effective electrolyte and a pretreatment solution for the development of stable and cheap aqueous AZIB electrolytes.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
batt202400365-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Fang, J. Zhou, A. Pan, S. Liang, ACS Energy Lett. 2018, 3, 2480–2501;
- 1bW. Kang, C. Jo, Ceramist 2021, 24, 35–53.
10.31613/ceramist.2021.24.1.03 Google Scholar
- 2
- 2aX. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Energy Stor. Mater. 2019, 20, 410–437;
- 2bL. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu, S.-X. Dou, S.-Z. Qiao, Energy Environ. Sci. 2021, 14, 5669–5689;
- 2cJ. Lee, J. Yoon, J. Jeon, Y. Hong, S.-G. Oh, H. Huh, Korean J. Chem. Eng. 2023, 40, 1901–1911.
- 3
- 3aY. Lv, Y. Xiao, L. Ma, C. Zhi, S. Chen, Adv. Mater. 2022, 34, 2106409;
- 3bH. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan, B. Fei, F. Pan, Nano Energy 2020, 70, 104523;
- 3cW. Kang, I. Nam, C. Jo, Korean J. Chem. Eng. 2023, 40, 1353–1359.
- 4A. Konarov, N. Voronina, J. H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. Myung, ACS Energy Lett. 2018, 3, 2620–2640.
- 5
- 5aN. Wang, H. Wan, J. Duan, X. Wang, L. Tao, J. Zhang, H. Wang, Mater. Today Adv. 2021, 11, 100149;
- 5bW. Shang, W. Yu, Y. Liu, R. Li, Y. Dai, C. Cheng, P. Tan, M. Ni, Energy Stor. Mater. 2020, 31, 44–57;
- 5cW. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li, W. Zong, H. Li, Z. Li, Z. Zhang, J. Zhu, F. Guo, X. Gao, Z. Du, J. Chen, T. Wang, G. He, I. P. Parkin, Angew. Chem. Int. Ed. 2023, 62, e202212695.
- 6T. Shoji, M. Hishinuma, T. Yamamoto, J. Appl. Electrochem. 1988, 18, 521–526.
- 7M. Li, Z. Li, X. Wang, J. Meng, X. Liu, B. Wu, C. Han, L. Mai, Energy Environ. Sci. 2021, 14, 3796–3839.
- 8
- 8aJ. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, Z. Guo, Adv. Mater. 2020, 32, 2003021;
- 8bW.-G. Lim, X. Li, D. Reed.
- 9J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng, S. Zhang, G. Bo, C. Wang, Z. Guo, Adv. Funct. Mater. 2020, 30, 2001263.
- 10
- 10aX. Huang, X. Liu, H. Li, Q. Zhao, T. Ma, Small Structures 2023, 4, 2200221;
- 10bJ. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Nat. Commun. 2018, 9, 2906.
- 11D. Reber, R.-S. Kühnel, C. Battaglia, ACS Mater. Lett. 2019, 1, 44–51.
- 12
- 12aY. Pan, Z. Liu, S. Liu, L. Qin, Y. Yang, M. Zhou, Y. Sun, X. Cao, S. Liang, G. Fang, Adv. Energy Mater. 2023, 13, 2203766;
- 12bJ. Cao, D. Zhang, R. Chanajaree, Y. Yue, Z. Zeng, X. Zhang, J. Qin, APM 2022, 1, 100007.
- 13
- 13aY. Hao, C. Huang, Y. Yang, Y. Qian, G. Chang, Y. Zhang, A. Hu, Q. Tang, X. Chen, J. Power Sources 2023, 584, 233631;
- 13bX. Feng, P. Li, J. Yin, Z. Gan, Y. Gao, M. Li, Y. Cheng, X. Xu, Y. Su, S. Ding, ACS Energy Lett. 2023, 8, 1192–1200;
- 13cA. Pomberger, A. A. Pedrina McCarthy, A. Khan, S. Sung, C. J. Taylor, M. J. Gaunt, L. Colwell, D. Walz, A. A. Lapkin, React. Chem. Eng. 2022, 7, 1368–1379.
- 14Z. Zeng, Y. Zeng, L. Sun, H. Mi, L. Deng, P. Zhang, X. Ren, Y. Li, Nanoscale 2021, 13, 12223–12232.
- 15X. Zhao, X. Zhang, N. Dong, M. Yan, F. Zhang, K. Mochizuki, H. Pan, Small 2022, 18, 2200742.
- 16
- 16aE. Xiang, M. N. Gómez-Cerezo, Y. Ali, S. S. Ramachandra, N. Yang, M. Dargusch, C. S. Moran, S. Ivanovski, A. Abdal-hay, ACS Appl. Mater. Interfaces 2022, 14, 22554–22569;
- 16bE. Xiang, C. S. Moran, S. Ivanovski, A. Abdal-Hay, Nanomater. 2023, 13, 2022.
- 17W. Wang, G. Huang, Y. Wang, Z. Cao, L. Cavallo, M. N. Hedhili, H. N. Alshareef, Adv. Energy Mater. 2022, 12, 2102797.
- 18
- 18aE. Lizundia, D. Kundu, Adv. Funct. Mater. 2021, 31, 2005646;
- 18bJ. Jeong, J. Lee, J. Kim, J. Chun, D. Kang, S. M. Han, C. Jo, J. Lee, J. Mater. Chem. A 2021, 9, 7774–7781;
- 18cJ. Jang, J. Oh, H. Jeong, W. Kang, C. Jo, Materials 2020, 13, 4625.
- 19
- 19aJ. Liu, Q. Zhang, T. Zhang, J.-T. Li, L. Huang, S.-G. Sun, Adv. Funct. Mater. 2015, 25, 3599–3605;
- 19bC. Senthil, S.-S. Kim, H. Y. Jung, Nat. Commun. 2022, 13, 145;
- 19cY.-P. Chuang, J.-L. Hong, ACS Appl. Energy Mater. 2021, 4, 10213–10221.
- 20
- 20aT. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu, H. Liu, L. Dai, X. Zhang, C. Si, H. Du, K. Zhang, Energy Stor. Mater. 2022, 48, 244–262;
- 20bN. Mittal, S. Tien, E. Lizundia, M. Niederberger, Small 2022, 18, 2107183;
- 20cC. Fu, Y. Wang, C. Lu, S. Zhou, Q. He, Y. Hu, M. Feng, Y. Wan, J. Lin, Y. Zhang, A. Pan, Energy Stor. Mater. 2022, 51, 588–598.
- 21
- 21aC. Rolin, in Industrial Gums (Third Edition) (Eds: R. L. Whistler, J. N. Bemiller), Academic Press, London, 1993, 257–293;
- 21bY. Gomravi, A. Karimi, H. Azimi, Korean J. Chem. Eng. 2021, 38, 1843–1858.
- 22J. DeRuiter, Principles of drug action 2005, 1, 1–10.
- 23
- 23aD. Mohnen, Curr. Opin. Plant Biol. 2008, 11, 266–277;
- 23bC. Lara-Espinoza, E. Carvajal-Millán, R. Balandrán-Quintana, Y. López-Franco, A. Rascón-Chu, Molecules 2018, 23, 942.
- 24Z. K. Mukhiddinov, D. K. Khalikov, F. T. Abdusamiev, C. C. Avloev, Talanta 2000, 53, 171–176.
- 25T. O. M. Brody, in Nutritional Biochemistry (Second Edition) (Ed: T. O. M. Brody), Academic Press, San Diego, 1999, pp. 1–56.
- 26
- 26aZ. Jia, W. Zhao, S. Hu, X. Yang, T. He, X. Sun, ChemComm 2022, 58, 8504–8507;
- 26bY. Tian, S. Chen, Q. Chen, S. Ding, K. S. Hui, J. Zhang, Next Energy 2023, 1, 100048;
10.1016/j.nxener.2023.100048 Google Scholar
- 26cZ. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng, X. Zhang, H. Pan, M. Yan, T. Shi, K. Tao, B. B. Xu, Y. Jiang, Nanomicro Lett. 2023, 15, 205.
- 27N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, J. Am. Chem. Soc. 2016, 138, 12894–12901.
- 28
- 28aZ. X. Lim, K. Y. Cheong, Phys. Chem. Chem. Phys. 2015, 17, 26833–26853;
- 28bT. Toniazzo, J. P. Fabi, Fluids 2023, 8, 243.
- 29Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou, M. Zhou, S. Chai, Y. Zhong, G. Cao, S. Liang, A. Pan, Nanomicro Lett. 2022, 14, 93.
- 30
- 30aS.-H. Huh, Y. J. Choi, S. H. Kim, J.-S. Bae, S.-H. Lee, S.-H. Yu, J. Mater. Chem. A 2023, 11, 19384–19395;
- 30bF.-N. Jiang, S.-J. Yang, H. Liu, X.-B. Cheng, L. Liu, R. Xiang, Q. Zhang, S. Kaskel, J.-Q. Huang, SusMat 2021, 1, 506–536.
- 31Y.-H. Lee, Y. Jeoun, S.-H. Lee, J. H. Kim, S.-Y. Kim, S.-H. Yu, K.-S. Ahn, Y.-E. Sung, Chem. Eng. J. 2023, 464, 142580.
- 32S. Di, X. Nie, G. Ma, W. Yuan, Y. Wang, Y. Liu, S. Shen, N. Zhang, Energy Stor. Mater. 2021, 43, 375–382.
- 33D. Grujicic, B. Pesic, Electrochim. Acta 2002, 47, 2901–2912.
- 34C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang, H. Wang, Carbon Energy 2020, 2, 540–560.
- 35Y.-F. Hu, L.-F. Zhou, H. Gong, H. Jia, P. Chen, Y.-S. Wang, L.-Y. Liu, T. Du, Korean J. Chem. Eng. 2022, 39, 2353–2360.
- 36
- 36aP. Xiong, Y. Kang, N. Yao, X. Chen, H. Mao, W.-S. Jang, D. M. Halat, Z.-H. Fu, M.-H. Jung, H. Y. Jeong, Y.-M. Kim, J. A. Reimer, Q. Zhang, H. S. Park, ACS Energy Lett. 2023, 8, 1613–1625;
- 36bS. H. Park, S. Y. Byeon, J.-H. Park, C. Kim, ACS Energy Lett. 2021, 6, 3078–3085.
- 37
- 37aA. Mitha, A. Z. Yazdi, M. Ahmed, P. Chen, ChemElectroChem 2018, 5, 2409–2418;
- 37bD. Kong, Q. Zhang, L. Li, H. Zhao, R. Liu, Z. Guo, L. Wang, Batteries 2023, 9, 262.
- 38Y. Qin, P. Liu, Q. Zhang, Q. Wang, D. Sun, Y. Tang, Y. Ren, H. Wang, Small 2020, 16, 2003106.
- 39
- 39aY. Zhang, G. Yang, M. L. Lehmann, C. Wu, L. Zhao, T. Saito, Y. Liang, J. Nanda, Y. Yao, Nano Lett. 2021, 21, 10446–10452;
- 39bJ. Jang, J. Chun, C. Jo, Energy Stor. Mater. 2023, 62, 102948.
10.1016/j.ensm.2023.102948 Google Scholar
- 40Y. Zhu, F. Wang, L. Liu, S. Xiao, Y. Yang, Y. Wu, Sci. Rep. 2013, 3, 3187.
- 41
- 41aP. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu, L. Liu, N. Yu, Q. Huang, B. Wang, X. Hu, Y. Wu, T. van Ree, Adv. Sci. 2021, 8, 2100309;
- 41bD.-Q. Li, J. Li, H.-L. Dong, X. Li, J.-Q. Zhang, S. Ramaswamy, F. Xu, Int. J. Biol. Macromol. 2021, 185, 49–65.
- 42G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li, J. A. Yuwono, J. Mao, J. Hao, J. Vongsvivut, L. Xing, C.-X. Zhao, Z. Guo, Nat. Commun. 2023, 14, 6526.
- 43Y. Shao, Z. Sun, Z. Tian, S. Li, G. Wu, M. Wang, X. Tong, F. Shen, Z. Xia, V. Tung, J. Sun, Y. Shao, Adv. Funct. Mater. 2021, 31, 2007843.
- 44X. Chen, X. Shi, P. Ruan, Y. Tang, Y. Sun, W.-Y. Wong, B. Lu, J. Zhou, Small Science 2023, 3, 2300007.
- 45G. Pan, J. Chen, K. Ge, L. Yang, F. Li, Z. Wang, S. Shi, X. Yang, Z. Zhou, A. Tang, W. Liu, Y. Sun, J. Mater. Chem. C 2019, 7, 4449–4458.
- 46
- 46aF. Yang, J. A. Yuwono, J. Hao, J. Long, L. Yuan, Y. Wang, S. Liu, Y. Fan, S. Zhao, K. Davey, Z. Guo, Adv. Mater. 2022, 34, 2206754;
- 46bZ. Liu, R. Wang, Q. Ma, J. Wan, S. Zhang, L. Zhang, H. Li, Q. Luo, J. Wu, T. Zhou, J. Mao, L. Zhang, C. Zhang, Z. Guo, Adv. Funct. Mater. 2024, 34, 2214538;
- 46cJ. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S.-Z. Qiao, Angew. Chem. Int. Ed. 2021, 60, 7366–7375.
- 47U. Einhorn-Stoll, Food Hydrocoll. 2018, 78, 109–119.
- 48X. Dou, X. Xie, S. Liang, G. Fang, Science Bulletin 2024, 69, 833–845.
- 49
- 49aR. Li, H. Zhang, Q. Zheng, X. Li, J. Mater. Chem. A 2020, 8, 5186–5193;
- 49bY. Kim, Y. Park, M. Kim, J. Lee, K. J. Kim, J. W. Choi, Nat. Commun. 2022, 13, 2371.
- 50H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller, J. Liu, Nat. Energy 2016, 1, 16039.
- 51J. Chen, W. Zhao, J. Jiang, X. Zhao, S. Zheng, Z. Pan, X. Yang, Energy Stor. Mater. 2023, 59, 102767.