Inhibitors of CA IX Enzyme Based on Polyhedral Boron Compounds
Dr. Michael Kugler
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorDr. Jan Nekvinda
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Josef Holub
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Suzan El Anwar
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Viswanath Das
Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
Search for more papers by this authorDr. Václav Šícha
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Klára Pospíšilová
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Search for more papers by this authorDr. Milan Fábry
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorDr. Vlastimil Král
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorDr. Jiří Brynda
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorDr. Václav Kašička
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Search for more papers by this authorDr. Marián Hajdúch
Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
Search for more papers by this authorCorresponding Author
Dr. Pavlína Řezáčová
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Dr. Bohumír Grüner
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Michael Kugler
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorDr. Jan Nekvinda
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Josef Holub
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Suzan El Anwar
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Viswanath Das
Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
Search for more papers by this authorDr. Václav Šícha
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorDr. Klára Pospíšilová
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Search for more papers by this authorDr. Milan Fábry
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorDr. Vlastimil Král
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorDr. Jiří Brynda
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorDr. Václav Kašička
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Search for more papers by this authorDr. Marián Hajdúch
Institute of Molecular and Translational Medicine, Hněvotínská 1333/5, 77900 Olomouc, Czech Republic
Search for more papers by this authorCorresponding Author
Dr. Pavlína Řezáčová
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
Search for more papers by this authorCorresponding Author
Dr. Bohumír Grüner
Institute of Inorganic Chemistry of the Czech Academy of Sciences, Hlavní Husinec, 1001, 25068 Řež, Czech Republic
Search for more papers by this authorGraphical Abstract
The review covers several classes of inhibitors specific for carbonic anhydrase IX enzyme that emerged recently from a non-traditional concept. This is characterized by combination of space-filing inorganic (metalla)carborane cluster with sulfamide and sulfonamide binding motif for Zn2+ in the active site. The structural factors essential for attaining high activity and selectivity for the CA IX isoform are discussed. Results from preclinical studies show relevance of these compounds for development of anticancer drugs.
Abstract
This review describes recent progress in the design and development of inhibitors of human carbonic anhydrase IX (CA IX) based on space-filling carborane and cobalt bis(dicarbollide) clusters. CA IX enzyme is known to play a crucial role in cancer cell proliferation and metastases. The new class of potent and selective CA IX inhibitors combines the structural motif of a bulky inorganic cluster with an alkylsulfamido or alkylsulfonamido anchor group for Zn2+ ion in the enzyme active site. Detailed structure-activity relationship (SAR) studies of a large series containing 50 compounds uncovered structural features of the cluster-containing inhibitors that are important for efficient and selective inhibition of CA IX activity. Preclinical evaluation of selected compounds revealed low toxicity, favorable pharmacokinetics and ability to reduce tumor growth. Cluster-containing inhibitors of CA IX can thus be considered as promising candidates for drug development and/or for combination therapy in boron neutron capture therapy (BNCT).
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aN. S. Hosmane, J. A. Maguire, Y. Zhu, M. Takagaki, Boron and Gadolinium Neutron Capture Therapy for Cancer Treatment, 1st ed., World Scientific, New, 2012;
10.1142/8056 Google Scholar
- 1bM. F. Hawthorne, M. W. Lee, J. Neuro-Oncol. 2003, 62, 33–45;
- 1cN. Protti, A. Deagostino, P. Boggio, D. Alberti, S. G. Crich, New Boronated Compounds for an Imaging-Guided Personalized Neutron Capture Therapy, Wiley, Chichester, 2018.
10.1002/9781119275602.ch3.5 Google Scholar
- 2M. F. Hawthorne, A. Maderna, Chem. Rev. 1999, 99, 3421–3434.
- 3
- 3aS. J. Baker, C. Z. Ding, T. Akama, Y.-K. Zhang, V. Hernandez, Y. Xia, Future Med. Chem. 2009, 1, 1275–1288;
- 3bW. Yang, X. Gao, B. Wang, Med. Res. Rev. 2003, 23, 346–368;
- 3cY. H. Zhu, X. L. Lin, H. M. Xie, J. L. Li, N. S. Hosmane, Y. J. Zhang, Curr. Med. Chem. 2019, 26, 5019–5035.
- 4
- 4aC. J. Van der Schyf, W. J. Geldenhuys, Neurotherapeutics 2009, 6, 175–186;
- 4bR. N. Grimes, Carboranes, 3rd ed., Academic Press, London, 2016;
- 4cD. Gabel, Pure Appl. Chem. 2015, 87, 173–179;
- 4dJ. F. Valliant, K. J. Guenther, A. S. King, P. Morel, P. Schaffer, O. O. Sogbein, K. A. Stephenson, Coord. Chem. Rev. 2002, 232, 173–230;
- 4eF. Issa, M. Kassiou, M. Rendina, Chem. Rev. 2011, 111, 5701–5722;
- 4fZ. J. Leśnikowski, J. Med. Chem. 2016, 59, 7738–7758;
- 4gM. Scholz, E. Hey-Hawkins, Chem. Rev. 2011, 111, 7035–7062;
- 4hJ. Kahlert, C. J. D. Austin, M. Kassiou, L. M. Rendina, Austr. J. Chem. 2013, 66, 1118–1123.
- 5T. M. Goszczynski, K. Fink, K. Kowalski, Z. J. Lesnikowski, J. Boratynski, Sci. Rep. 2017, 7, 12.
- 6
- 6aZ. J. Lesnikowski, Collect. Czech. Chem. Commun. 2007, 72, 1646–1658;
- 6bP. Stockmann, M. Gozzi, R. Kuhnert, M. B. Sarosi, E. Hey-Hawkins, Chem. Soc. Rev. 2019, 48, 3497–3512.
- 7
- 7aJ. Casanova, J. Am. Chem. Soc. 1999, 121, 6522–6522;
- 7bR. E. Williams, Chem. Rev. 1992, 92, 177–207.
- 8J. Fanfrlík, M. Lepšík, D. Horinek, Z. Havlas, P. Hobza, ChemPhysChem 2006, 7, 1100–1105.
- 9J. Fanfrlik, D. Hnyk, M. Lepsik, P. Hobza, Phys. Chem. Chem. Phys. 2007, 9, 2085–2093.
- 10
- 10aJ. Fanfrlik, A. Pecina, J. Řezáč, R. Sedlák, D. Hnyk, M. Lepšík, P. Hobza, Phys. Chem. Chem. Phys. 2017, 19, 18194–18200;
- 10bR. Sedlak, J. Fanfrlik, A. Pecina, D. Hnyk, P. Hobza, M. Lepsik, Boron: The Fifth Element, Vol. 20 (Eds.: D. Hnyk, M. L. McKee), Springer, Dordrecht, 2015, pp. 219–239.
10.1007/978-3-319-22282-0_9 Google Scholar
- 11K. Hermansson, M. Wójcik, S. Sjöberg, Inorg. Chem. 1999, 38, 6039–6048.
- 12K. Yamamoto, Y. Endo, Bioorg. Med. Chem. Lett. 2001, 11, 2389–2392.
- 13M. A. Fox, W. R. Gill, P. L. Herbertson, J. A. H. MacBride, K. Wade, H. M. Colquhoun, Polyhedron 1996, 15, 565–571.
- 14
- 14aR. N. Grimes, Coord. Chem. Rev. 2000, 200, 773–811;
- 14bB. P. Dash, R. Satapathy, B. R. Swain, C. S. Mahanta, B. B. Jena, N. S. Hosmane, J. Organomet. Chem. 2017, 849–850, 170–194;
- 14cI. B. Sivaev, V. I. Bregadze, Collect. Czech. Chem. Commun. 1999, 64, 783–805.
- 15J. Rak, R. Kaplánek, V. Král, Bioorg. Med. Chem. Lett. 2010, 20, 1045–1048.
- 16O. Leukart, M. Caviezel, A. Eberle, E. Escher, A. Tun-Kyi, R. Schwyzer, Helv. Chim. Acta 1976, 59, 2184–2187.
- 17W. Fischli, O. Leukart, R. Schwyzer, Helv. Chim. Acta 1977, 60, 959–963.
- 18
- 18aJ.-L. Fauchère, O. Leukart, A. Eberle, R. Schwyzer, Helv. Chim. Acta 1979, 62, 1385–1395;
- 18bE. Escher, G. Guillemette, O. Leukart, D. Regoli, Eur. J. Pharmacol. 1980, 66, 267–272;
- 18cR. J. Nachman, P. E. A. Teal, P. A. Radel, G. M. Holman, R. L. Abernathy, Peptides 1996, 17, 747–752.
- 19Y. Endo, T. Iijima, Y. Yamakoshi, H. Fukasawa, C. Miyaura, M. Inada, A. Kubo, A. Itai, Chem. Biol. 2001, 8, 341–355.
- 20
- 20aT. Iijima, Y. Endo, M. Tsuji, E. Kawachi, H. Kagechika, K. Shudo, Chem. Pharm. Bull. 1999, 47, 398–404;
- 20bT. Goto, K. Ohta, T. Suzuki, S. Ohta, Y. Endo, Bioorg. Med. Chem. 2005, 13, 6414–6424.
- 21M. Tsuji, Y. Koiso, H. Takahashi, Y. Hashimoto, Y. Endo, Biol. Pharm. Bull. 2000, 23, 513–516.
- 22B. T. S. Thirumamagal, X. B. Zhao, A. K. Bandyopadhyaya, S. Naranyanasamy, J. Johnsamuel, R. Tiwari, D. W. Golightly, V. Patel, B. T. Jehning, M. V. Backer, R. F. Barth, R. J. Lee, J. M. Backer, W. Tjarks, Bioconjugate Chem. 2006, 17, 1141–1150.
- 23P. Cígler, M. Kožíšek, P. Řezáčová, J. Brynda, Z. Otwinowski, J. Pokorná, J. Plešek, B. Grűner, L. Dolečková-Marešová, M. Máša, J. Sedláček, J. Bodem, H. G. Krausslich, V. Král, J. Konvalinka, Proc. Natl. Acad. Sci. USA 2005, 102, 15394–15399.
- 24
- 24aI. Fuentes, T. Garcia-Mendiola, S. Sato, M. Pita, H. Nakamura, E. Lorenzo, F. Teixidor, F. Marques, C. Viñas, Chem. Eur. J. 2018, 24, 17239–17254;
- 24bP. Farras, E. J. Juarez-Perez, M. Lepšík, R. Luque, R. Núñez, F. Teixidor, Chem. Soc. Rev. 2012, 41, 3445–3463.
- 25
- 25aW. S. Sly, P. Y. Hu, Annu. Rev. Biochem. 1995, 64, 375–401;
- 25bC. T. Supuran, A. Scozzafava, Bioorg. Med. Chem. 2007, 15, 4336–4350;
- 25cT. S. Claudiu, Curr. Top. Med. Chem. 2007, 7, 825–833.
- 26
- 26aS. Hamidi, M. Avoli, Neuropharmacology 2015, 95, 377–387;
- 26bE. Ruusuvuori, K. Kaila, Subcell. Biochem. 2014, 75, 271–290;
- 26cR. L. Arechederra, A. Waheed, W. S. Sly, C. T. Supuran, S. D. Minteer, Bioorg. Med. Chem. 2013, 21, 1544–1548.
- 27C. B. Mishra, M. Tiwari, C. T. Supuran, Med. Res. Rev. 2020, 40, 2485–2565.
- 28
- 28aC. T. Supuran, Curr. Pharm. Des. 2008, 14, 601–602;
- 28bE. Masini, F. Carta, A. Scozzafava, C. T. Supuran, Expert Opin. Ther. Pat. 2013, 23, 705–716;
- 28cA. Scozzafava, C. T. Supuran, F. Carta, Expert Opin. Ther. Pat. 2013, 23, 725–735;
- 28dF. Carta, C. T. Supuran, Expert Opin. Ther. Pat. 2013, 23, 681–691;
- 28eM. Aggarwal, B. Kondeti, R. McKenna, Expert Opin. Ther. Pat. 2013, 23, 717–724.
- 29
- 29aM. de Martino, I. Lucca, A. Mbeutcha, H. G. Wiener, A. Haitel, M. Susani, S. F. Shariat, T. Klatte, Eur. Urol. 2015, 68, 552–554;
- 29bL. Capkova, L. Koubkova, R. Kodet, Neoplasma 2014, 61, 161–169;
- 29cM. Kobayashi, T. Matsumoto, S. Ryuge, K. Yanagita, R. Nagashio, Y. Kawakami, N. Goshima, S.-X. Jiang, M. Saegusa, A. Iyoda, Y. Satoh, N. Masuda, Y. Sato, PLoS One 2012, 7, e33952–e33952;
- 29dM.-H. Chien, T.-H. Ying, Y.-H. Hsieh, C.-H. Lin, C.-H. Shih, L.-H. Wei, S.-F. Yang, Oral Oncol. 2012, 48, 417–423.
- 30
- 30aJ. Kopecka, I. Campia, A. Jacobs, A. P. Frei, D. Ghigo, B. Wollscheid, C. Riganti, Oncotarget 2015, 6, 6776–6793;
- 30bT. Dorai, I. S. Sawczuk, J. Pastorek, P. H. Wiernik, J. P. Dutcher, Eur. J. Cancer 2005, 41, 2935–2947;
- 30cJ.-S. Yang, C.-W. Lin, C.-Y. Chuang, S.-C. Su, S.-H. Lin, S.-F. Yang, Tumor Biol. 2015, 36, 9517–9524.
- 31M. A. Pinard, B. Mahon, R. McKenna, BioMed Res. Int. 2015, 2015, 453543.
- 32A. Bhatt, B. P. Mahon, V. W. D. Cruzeiro, B. Cornelio, M. Laronze-Cochard, M. Ceruso, J. Sapi, G. A. Rance, A. N. Khlobystov, A. Fontana, A. Roitberg, C. T. Supuran, R. McKenna, ChemBioChem 2017, 18, 213–222.
- 33V. Alterio, A. Di Fiore, K. D′Ambrosio, C. T. Supuran, G. De Simone, Chem. Rev. 2012, 112, 4421–4468.
- 34
- 34aS. Pastorekova, S. Parkkila, J. Pastorek, C. T. Supuran, J. Enzyme Inhib. Med. Chem. 2004, 19, 199–229;
- 34bC. T. Supuran, Future Med. Chem. 2011, 3, 1165–1180.
- 35
- 35aC. T. Supuran, J. Enzyme Inhib. Med. Chem. 2012, 27, 759–772;
- 35bC. T. Supuran, Bioorg. Med. Chem. Lett. 2010, 20, 3467–3474.
- 36
- 36aV. Alterio, R. M. Vitale, S. M. Monti, C. Pedone, A. Scozzafava, A. Cecchi, G. De Simone, C. T. Supuran, J. Am. Chem. Soc. 2006, 128, 8329–8335;
- 36bS. Biswas, M. Aggarwal, Ö. Güzel, A. Scozzafava, R. McKenna, C. T. Supuran, Bioorg. Med. Chem. 2011, 19, 3732–3738;
- 36cF. Carta, V. Garaj, A. Maresca, J. Wagner, B. S. Avvaru, A. H. Robbins, A. Scozzafava, R. McKenna, C. T. Supuran, Bioorg. Med. Chem. 2011, 19, 3105–3119.
- 37J. Brynda, P. Mader, V. Šícha, M. Fábry, K. Poncová, M. Bakardiev, B. Grüner, P. Cígler, P. Řezáčová, Angew. Chem. Int. Ed. 2013, 52, 13760;
Angew. Chem. 2013, 125, 14005–13763.
10.1002/ange.201307583 Google Scholar
- 38T. N. Bhat, P. Bourne, Z. K. Feng, G. Gilliland, S. Jain, V. Ravichandran, B. Schneider, K. Schneider, N. Thanki, H. Weissig, J. Westbrook, H. M. Berman, Nucleic Acids Res. 2001, 29, 214–218.
- 39P. Mader, J. Brynda, R. Gitto, S. Agnello, P. Pachl, C. T. Supuran, A. Chimirri, P. Řezáčová, J. Med. Chem. 2011, 54, 2522–2526.
- 40
- 40aB. Grüner, J. Brynda, V. Das, V. Šícha, J. Štepánková, J. Nekvinda, J. Holub, K. Pospíšilová, M. Fábry, P. Pachl, V. Král, M. Kugler, V. Mašek, M. Medvedíková, S. Matějková, A. Nová, B. Lišková, S. Gurská, P. Džubák, M. Hajdůch, P. Řezáčová, J. Med. Chem. 2019, 62, 9560–9575;
- 40bJ. Dvořanová, M. Kugler, J. Holub, V. Šícha, V. Das, J. Nekvinda, S. El Anwar, M. Havránek, K. Pospíšilová, M. Fábry, V. Král, M. Medvedíková, S. Matějková, B. Liškova, S. Gurská, P. Džubák, J. Brynda, M. Hajdůch, B. Grüner, P. Rezáčová, Eur. J. Med. Chem. 2020, 200, 112460;
- 40cB. Grüner, M. Kugler, S. El Anwar, J. Holub, J. Nekvinda, D. Bavol, Z. Růžičková, K. Pospíšilová, M. Fábry, V. Král, J. Brynda, P. Řezáčová, ChemPlusChem 2020, 85, 351–363;
- 40dM. Kugler, J. Holub, J. Brynda, K. Pospíšilová, S. E. Anwar, D. Bavol, M. Havránek, V. Král, M. Fábry, B. Grüner, P. Rezáčová, J. Enzyme Inhib. Med. Chem. 2020, 35, 1800–1810;
- 40eJ. Nekvinda, M. Kugler, J. Holub, S. El Anwar, J. Brynda, K. Pospíšilová, Z. Růžičková, P. Řezáčová, B. Grüner, Chem. Eur. J. 2020, 69, 16541–16553.
- 41
- 41aF. Carta, C. T. Supuran, A. Scozzafava, Future Med. Chem. 2014, 6, 1149–1165;
- 41bA. Bonardi, A. Nocentini, S. Bua, J. Combs, C. Lomelino, J. Andring, L. Lucarini, S. Sgambellone, E. Masini, R. McKenna, P. Gratteri, C. T. Supuran, J. Med. Chem. 2020, 63, 7422–7444.
- 42J. G. Wilson, A. K. M. Anisuzzaman, F. Alam, A. H. Soloway, Inorg. Chem. 1992, 31, 955–1958.
- 43
- 43aJ. D. Lee, Y. J. Lee, H. J. Jeong, J. S. Lee, C. H. Lee, J. Ko, S. O. Kang, Organometallics 2003, 22, 445–449;
- 43bS. L. Woodhouse, L. M. Rendina, Dalton Trans. 2004, 2004, 3669–3677.
- 44A. S. Batsanov, A. E. Goeta, J. A. K. Howard, A. K. Hughes, J. M. Malget, J. Chem. Soc. Dalton Trans. 2001, 1820–1826.
- 45
- 45aV. N. Kalinin, E. G. Rys, A. A. Tyutyunov, A. Z. Starikova, A. A. Korlyukov, V. A. Ol′shevskaya, D. D. Sung, A. B. Ponomaryov, P. V. Petrovskii, E. Hey-Hawkins, Dalton Trans. 2005, 903–908;
- 45bL. N. Goswami, T. J. Olds, T. G. Monk, Q. L. Johnson, J. P. Dilger, M. A. Shanawaz, S. S. Jalisatgi, M. F. Hawthorne, G. R. Kracke, ChemMedChem 2019, 14, 1108–1114.
- 46V. A. Ol′shevskaya, Y. V. Dutikova, A. A. Tyutyunov, E. G. Kononova, P. V. Petrovskii, D. D. Sung, V. N. Kalinin, Synlett 2010, 1265–1267.
- 47K. Vyakaranam, S. J. Li, C. Zheng, N. S. Hosmane, Inorg. Chem. Commun. 2001, 4, 180–182.
- 48B. E. Maryanoff, D. F. McComsey, M. J. Costanzo, C. Hochman, V. Smith-Swintosky, R. P. Shank, J. Med. Chem. 2005, 48, 1941–1947.
- 49R. J. Pace, J. Williams, R. L. Williams, J. Chem. Soc. 1961, 2196-&.
- 50A. A. Semioshkin, I. B. Sivaev, V. I. Bregadze, Dalton Trans. 2008, 2008, 977–992.
- 51J. Plešek, B. Grüner, V. Sicha, V. Bohmer, I. Cisařová, Organometallics 2012, 31, 1703–1715.
- 52
- 52aB. Grüner, P. Švec, V. Šícha, Z. Padělková, Dalton Trans. 2012, 41, 7498–7512;
- 52bJ. Nekvinda, J. Švehla, I. Císařová, B. Grüner, J. Organomet. Chem. 2015, 798, 112–120.
- 53B. Grüner, V. Šícha, D. Hnyk, M. G. S. Londesborough, I. Cisařová, Inorg. Chem. 2015, 54, 3148–3158.
- 54R. M. Chamberlin, B. L. Scott, M. M. Melo, K. D. Abney, Inorg. Chem. 1997, 36, 809–817.
- 55R. G. Khalifah, J. Biol. Chem. 1971, 246, 2561–2573.
- 56M. A. Pinard, C. D. Boone, B. D. Rife, C. T. Supuran, R. McKenna, Bioorg. Med. Chem. 2013, 21, 7210–7215.
- 57M. Aggarwal, B. Kondeti, R. McKenna, Bioorg. Med. Chem. 2013, 21, 1526–1533.
- 58P. Mader, A. Pecina, P. Cígler, M. Lepšík, V. Šícha, P. Hobza, B. Gruner, J. Fanfrlík, J. Brynda, P. Řezáčová, BioMed Res. Int. 2014, 2014, 9.
- 59C. T. Supuran, Expert Opin. Drug Discovery 2017, 12, 61–88.
- 60V. M. Krishnamurthy, G. K. Kaufman, A. R. Urbach, I. Gitlin, K. L. Gudiksen, D. B. Weibel, G. M. Whitesides, Chem. Rev. 2008, 108, 946–1051.
- 61V. Šolínová, J. Brynda, V. Šícha, J. Holub, B. Grűner, V. Kašička, Electrophoresis 2021, 42, 910–919.
- 62C. L. Lomelino, B. P. Mahon, R. McKenna, F. Carta, C. T. Supuran, Bioorg. Med. Chem. 2016, 24, 976–981.
- 63J. T. Andring, M. Fouch, S. Akocak, A. Angeli, C. T. Supuran, M. A. Ilies, R. McKenna, J. Med. Chem. 2020, 63, 13064–13075.
- 64
- 64aP. C. McDonald, S. Chia, P. L. Bedard, Q. Chu, M. Lyle, L. R. Tang, M. Singh, Z. H. Zhang, C. T. Supuran, D. J. Renouf, S. Dedhar, Am. J. Clin. Oncol. Cancer Clin. Trials 2020, 43, 484–490;
- 64bY. M. Lou, P. C. McDonald, A. Oloumi, S. Chia, C. Ostlund, A. Ahmadi, A. Kyle, U. A. D. Keller, S. Leung, D. Huntsman, B. Clarke, B. W. Sutherland, D. Waterhouse, M. Bally, C. Roskelley, C. M. Overall, A. Minchinton, F. Pacchiano, F. Carta, A. Scozzafava, N. Touisni, J. Y. Winum, C. T. Supuran, S. Dedhar, Cancer Res. 2011, 71, 3364–3376.
- 65D. Alberti, A. Michelotti, A. Lanfranco, N. Protti, S. Altieri, A. Deagostino, S. G. Crich, Sci. Rep. 2020, 10, 13.