Beneficial Effect of a Secondary Ligand on the Catalytic Difunctionalization of Vinyl Arenes with Boron and CO2
Trina M. Perrone
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorAmy S. Gregory
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorSteven W. Knowlden
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorNatalie R. Ziemer
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorDr. Rabah N. Alsulami
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
College of Applied Sciences, Um Al-Qura University, Makkah, 24382 Saudi Arabia
Search for more papers by this authorProf. Jeffrey L. Petersen
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorCorresponding Author
Prof. Brian V. Popp
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorTrina M. Perrone
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorAmy S. Gregory
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorSteven W. Knowlden
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorNatalie R. Ziemer
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorDr. Rabah N. Alsulami
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
College of Applied Sciences, Um Al-Qura University, Makkah, 24382 Saudi Arabia
Search for more papers by this authorProf. Jeffrey L. Petersen
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorCorresponding Author
Prof. Brian V. Popp
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506 USA
Search for more papers by this authorGraphical Abstract
Copper catalysis: The boracarboxylation of vinyl arenes is a useful alkene difunctionalization reaction that provides synthetically useful β-boryl-α-aryl propanoic acid derivatives. Here we show that catalytic additives, specifically triphenylphosphine or electron-rich styrene, leads to improved catalyst efficiency and broadening of substrate scope. Preliminary experiments are described that begin to clarify the role of ligand additive in the catalytic reaction.
Abstract
The boracarboxylation of vinyl arenes catalyzed by copper(I) is an alkene difunctionalization reaction that provides synthetically useful β-boryl-α-aryl propanoic acid derivatives. Drawbacks of the original reaction methodology are high catalyst loading and vinyl arene scope limited largely to electron-rich systems. Herein, we demonstrate that catalytic additives, specifically triphenylphosphine or electron-rich styrene, leads to improved catalyst efficiency and broadening of substrate scope. With the addition of PPh3, comparable yields of previously reported boracarboxylated substrates as well as two novel β-boronated non-steroidal anti-inflammatory drugs (bora-fenoprofen and bora-flurbiprofen) were achieved at lower catalyst loading. Boracarboxylation of electron-deficient substrates could be achieved through superstoichiometric addition of vinyl arene or addition of secondary phosphine ligand. Reactivity optimization and competition experiments have provided preliminary insights into the ability of PPh3 to aid in the catalytic cycle, specifically carboxylation of electron-rich benzyl-copper(I) intermediate. Additional competition studies revealed that a catalytic amount of an electron-rich vinyl arene could be used in addition to the copper(I) catalyst to promote boracarboxylation of an electron-deficient styrene derivative.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc201901197-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. A. Sheldon, J. R. Soc. Interface 2016, 13.
- 1bR. A. Sheldon, Chem. Soc. Rev. 2012, 41, 1437–1451.
- 1cG. Centi, S. Perathoner, Catal. Today 2008, 138, 69–76.
- 1dP. T. Anastas, M. M. Kirchhoff, T. C. Williamson, Appl. Catal. A 2001, 221, 3–13.
- 2For representative examples, see:
- 2aB. Su, Z.-C. Cao, Z.-J. Shi, Acc. Chem. Res. 2015, 48, 886–896.
- 2bJ. V. Obligacion, P. J. Chirik, Nat. Rev. Chem. 2018, 2, 15–34.
- 2cHydrofunctionalization, V. P. Ananikov, M. Tanaka, G. Abbiati, Eds., Topics in Organometallic Chemistry, Springer: Berlin, 2013.
- 2dJ. R. Carney, B. R. Dillon, L. Campbell, S. P. Thomas, Angew. Chem. Int. Ed. 2018, 57, 10620–10624;
Angew. Chem. 2018, 130, 10780–10784.
10.1002/ange.201805483 Google Scholar
- 2eI. Bauer, H.-J. Knölker, Chem. Rev. 2015, 115, 3170–3387.
- 2fIron Catalysis II (Ed: E. Bauer), Springer International Publishing, Basel, 2015.
- 3
- 3aR. A. Sheldon, Green Chem. 2014, 16, 950–963.
- 3bX. Zhang, M. Fevre, G. O. Jones, R. M. Waymouth, Chem. Rev. 2018, 118, 839–885.
- 3cA. R. C. Morais, A. M. da Costa Lopes, R. Bogel-Lukasik, Chem. Rev. 2015, 115, 3–27.
- 3dJ. A. Bennett, K. Wilson, A. F. Lee, J. Mater. Chem. A 2016, 4, 3617–3637.
- 3eJ. H. Clark, T. J. Farmer, L. Herrero-Davila, J. Sherwood, Green Chem. 2016, 18, 3914–3934.
- 4
- 4aJ. Artz, T. E. Muller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434–504.
- 4bQ. Liu, L. P. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933–5948.
- 4cA. A. Olajire, J. CO2 Util. 2013, 3–4, 74–92.
- 4dR. Muthuraj, T. Mekonnen, Polymer 2018, 145, 348–373.
- 4eM. Peters, B. Kohler, W. Kuckshinrichs, W. Leitner, P. Markewitz, T. E. Muller, ChemSusChem 2011, 4, 1216–1240.
- 5
- 5aP. Shao, S. Wang, C. Chen, C. Xi, Org. Lett. 2016, 18, 2050–2053.
- 5bM. D. Greenhalgh, S. P. Thomas, J. Am. Chem. Soc. 2012, 134, 11900–11903.
- 6C. M. Williams, J. B. Johnson, T. Rovis, J. Am. Chem. Soc. 2008, 130, 14936–14737.
- 7M. Gaydou, T. Moragas, F. Julia-Hernandez, R. Martin, J. Am. Chem. Soc. 2017, 139, 12161–12164.
- 8For a general review, see:
- 8aM. Börjesson. T. Moragas, D. Gallego, R. Martin, ACS Catal. 2016, 6, 6739–6749. For notable examples related to this work, see:
- 8bM. Juhl, S. L. R. Laursen, Y. Huang, D. U. Nielsen, K. Daasbjerg, T. Skrydstrup, ACS Catal. 2017, 7, 1392–1396.
- 8cR. D. Grigg, J. W. Rigoli, R. Van Hoveln, S. Neale, J. M. Schomaker, Chem. Eur. J. 2012, 18, 9391–9396.
- 9
- 9aL. Zhang, J. Cheng, B. Carry, Z. Hou, J. Am. Chem. Soc. 2012, 134, 14314–14317.
- 9bT. Fujihara, Y. Tani, K. Semba, J. Terao, Y. Tsuji, Angew. Chem. Int. Ed. 2012, 51, 11487–11490;
Angew. Chem. 2012, 124, 11655–11658.
10.1002/ange.201207148 Google Scholar
- 10T. W. Butcher, E. J. McClain, T. G. Hamilton, T. M. Perrone, K. M. Kroner, G. C. Donohoe, N. G. Akhmedov, J. L. Petersen, B. V. Popp, Org. Lett. 2016, 18, 6428–6431.
- 11A limited number of visible-light photoredox catalyzed alkene hetero(element) carboxylation reactions have been reported since our original report, see:
- 11aV. R. Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed. 2017, 56, 10915–10919;
Angew. Chem. 2017, 129, 11055–11059.
10.1002/ange.201706263 Google Scholar
- 11bJ. H. Ye, M. Miao, H. Huang, S. S. Yan, Z. B. Yin, W. J. Zhou, D. G. Yu, Angew. Chem. Int. Ed. 2017, 56, 15416–15420;
Angew. Chem. 2017, 129, 15618–15622.
10.1002/ange.201707862 Google Scholar
- 11cJ. Hou, A. Ee, H. Cao, H. W. Ong, J. H. Xu, J. Wu, Angew. Chem. Int. Ed. 2018, 57, 17220–17224.
- 12
- 12aJ. S. Bandar, E. Ascic, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 5821–5824.
- 12bE. Ascic, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 4666–4669.
- 12cS. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2014, 136, 15913–15916.
- 12dB. H. Lipshutz, K. Noson, W. Chrisman, A. Lower, J. Am. Chem. Soc. 2003, 125, 8779–8789.
- 13Copper(I)-catalyzed hydroboration and protoboration of alkenes is known, see the following reviews and the references therein:
- 13aK. Semba, T. Fujihara, J. Terao, Y. Tsuji, Tetrahedron 2015, 71, 2183–2197.
- 13bD. Hemming, R. Fritzemeier, S. A. Westcott, W. L. Santos, P. G. Steel, Chem. Soc. Rev. 2018, 47, 7477–7494.
- 14Alkoxide-catalyzed styrene polymerization has been observed previously, see: A. Zwierzak, H. Pines, J. Org. Chem. 1963, 28, 3392–3399.
- 15
- 15aS. Lin, Z. Lin, Organometallics 2019, 38, 240–247.
- 15bX. Lv, Y. B. Wu, G. Lu, Catal. Sci. Technol. 2017, 7, 5049–5054.
- 16Investigation into the kinetics of the insertion and carboxylation steps of the proposed mechanism are in progress.
- 17B. Carry, L. Zhang, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2016, 55, 6257–6260;
Angew. Chem. 2016, 128, 6365–6368.
10.1002/ange.201602278 Google Scholar
- 18
- 18aT. Tsuda, S. Sanada, K. Ueda, T. Saegusa, Inorg. Chem. 1976, 15, 2329–2332.
- 18bT. Tsuda, Y. Chujo, T. Saegusa, J. Am. Chem. Soc. 1980, 102, 431–433.
- 19
- 19aD. S. Laitar, E. Y. Tsui, J. P. Sadighi, Organometallics 2006, 25, 2405–2408.
- 19bL. Dang, H. Zhao, Z. Lin, T. B. Marder, Organometallics 2007 , 26, 2824–2832.
- 20Copper-boryl complexes ligated by iPr3P ligand have been recently prepared and characterized, see: C. Borner, L. Anders, K. Brandhorst, C. Kleeberg, Organometallics 2017, 36, 4687–4690.
- 21S. E. Denmark, C. R. Butler, Org. Lett. 2016, 8, 63–66.
- 22O. Santoro, A. Collado, A. M. Z. Slawin, S. P. Nolan, C. S. J. Cazin, Chem. Commun. 2013, 49, 10483–10485.