Photocatalytic Hydrogen Production by Boron Modified TiO2/Carbon Nitride Heterojunctions
Corresponding Author
Dr. Konstantinos C. Christoforidis
Department of Environmental Engineering, Democritus University of Thrace, Xanthi, 67100 Greece
Department of Chemical and Pharmaceutical Sciences ICCOM-CNR and INSTM, University of Trieste, Trieste, 34127 Italy
Institut de Chimie et Procédés Pour l'Energie l'Environnement et la Santé, (ICPEES) ECPM, University of Strasbourg, Strasbourg, 67087 France
Search for more papers by this authorDr. Tiziano Montini
Department of Chemical and Pharmaceutical Sciences ICCOM-CNR and INSTM, University of Trieste, Trieste, 34127 Italy
Search for more papers by this authorDr. Maria Fittipaldi
INSTM and Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, 50019 Italy
Search for more papers by this authorDr. Juan José Delgado Jaén
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y, Química Inorgánica Facultad de Ciencias Universidad de Cádiz, Puerto Real, 11510 Spain
Search for more papers by this authorCorresponding Author
Prof. Paolo Fornasiero
Department of Chemical and Pharmaceutical Sciences ICCOM-CNR and INSTM, University of Trieste, Trieste, 34127 Italy
Search for more papers by this authorCorresponding Author
Dr. Konstantinos C. Christoforidis
Department of Environmental Engineering, Democritus University of Thrace, Xanthi, 67100 Greece
Department of Chemical and Pharmaceutical Sciences ICCOM-CNR and INSTM, University of Trieste, Trieste, 34127 Italy
Institut de Chimie et Procédés Pour l'Energie l'Environnement et la Santé, (ICPEES) ECPM, University of Strasbourg, Strasbourg, 67087 France
Search for more papers by this authorDr. Tiziano Montini
Department of Chemical and Pharmaceutical Sciences ICCOM-CNR and INSTM, University of Trieste, Trieste, 34127 Italy
Search for more papers by this authorDr. Maria Fittipaldi
INSTM and Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, 50019 Italy
Search for more papers by this authorDr. Juan José Delgado Jaén
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y, Química Inorgánica Facultad de Ciencias Universidad de Cádiz, Puerto Real, 11510 Spain
Search for more papers by this authorCorresponding Author
Prof. Paolo Fornasiero
Department of Chemical and Pharmaceutical Sciences ICCOM-CNR and INSTM, University of Trieste, Trieste, 34127 Italy
Search for more papers by this authorGraphical Abstract
Photocatalysis: Photocatalytic hydrogen production is significantly improved via doping TiO2 with boron and coupling with carbon nitride.
Abstract
Boron-doped anatase TiO2 particles were effectively coupled with carbon nitride (CN) forming nanocomposites. The materials were fully characterized by DR-UV-Vis, N2 adsorption-desorption isotherms, XRD, Raman, FTIR, TGA, XPS, TEM, electron energy loss spectroscopy, photoluminescence, and electron paramagnetic spectroscopy (EPR) spectroscopy. The developed heterojunctions were applied as photocatalysts for hydrogen (H2) evolution by the photoreforming process of ethanol under solar irradiation, using minimal amount of Pt nanoparticles (0.1 wt. %) as co-catalyst. The effects of boron addition and CN content were evaluated and optimized nanocomposite presented 85 % increase in H2 evolution compared with the pure anatase TiO2 catalyst. The observed higher H2 evolution rates were ascribed to improvements in charge formation and separation efficiency due to the B-dopant and the presence of CN.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc201901703-sup-0001-misc_information.pdf587 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. C. Christoforidis, P. Fornasiero, ChemCatChem 2017, 9, 1523–1544;
- 1bM. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446–6473;
- 1cK. C. Christoforidis, P. Fornasiero, ChemCatChem 2019, 11, 368–382;
- 1dX. Chen, S. Shen, L. Guo, S. S. Mao, Chem. Rev. 2010, 110, 6503–6570.
- 2Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 2014, 114, 9987–10043.
- 3
- 3aK. C. Christoforidis, A. Iglesias-Juez, S. J. A. Figuero, M. D. Michiel, M. A. Newton, M. Fernandez-Garcia, Catal. Sci. Technol. 2013, 3, 626–634;
- 3bL. Chen, X. Zhou, B. Jin, J. Luo, X. Xu, L. Zhang, Y. Hong, Int. J. Hydrogen Energy 2016, 41, 7292–7300.
- 4P. Carmichael, D. Hazafy, D. S. Bhachu, A. Mills, J. A. Darr, I. P. Parkin, Phys. Chem. Chem. Phys. 2013, 15, 16788–16794.
- 5
- 5aV. Gombac, L. D. Rogatis, A. Gasparotto, G. Vicario, T. Montini, D. Barreca, G. Balducci, P. Fornasiero, E. Tondello, M. Graziania, Chem. Phys. 2007, 339, 111–123;
- 5bS. In, A. Orlov, R. Berg, F. García, S. Pedrosa-Jimenez, M. S. Tikhov, D. S. Wright, R. M. Lambert, J. Am. Chem. Soc. 2007, 129, 13790–13791;
- 5cM. Fittipaldi, V. Gombac, T. Montini, P. Fornasiero, M. Graziani, Inorg. Chim. Acta 2008, 361, 3980–3987.
- 6N. Lu, X. Quan, J. Li, S. Chen, H. Yu, G. Chen, J. Phys. Chem. C 2011, 111, 11836–11842.
- 7
- 7aJ. Zhang, Y. Chen, X. Wang, Energy Environ. Sci. 2015, 8, 3092–3108;
- 7bK. C. Christoforidis, Z. Syrgiannis, V. L. Parola, T. Montini, C. Petit, E. Stathatose, R. Godin, J. R. Durrant, M. Prato, P. Fornasiero, Nano Energy 2018, 50, 468–478;
- 7cE. M. Dias, K. C. Christoforidis, L. Francas, C. Petit, ACS Appl. Energy Mater. 2018, 1, 6524–6534;
- 7dX. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76–80;
- 7eW. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, S. P. Chai, Chem. Rev. 2016, 116, 7159–7329.
- 8
- 8aJ. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu, X. Wang, Energy Environ. Sci. 2011, 4, 675–678;
- 8bY. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 2015, 54, 12868–12884;
Angew. Chem. 2015, 127, 13060–13077;
10.1002/ange.201501788 Google Scholar
- 8cS. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452–2456.
- 9
- 9aZ. Zhao, Y. Sun, F. Dong, Nanoscale 2015, 7, 15–37;
- 9bP. Niu, L. Zhang, G. Liu, H.-M. Cheng, Adv. Funct. Mater. 2012, 22, 4763–4770;
- 9cX. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 2013, 135, 18–21;
- 9dK. C. Christoforidis, T. Montini, E. Bontempi, S. Zafeiratos, J. J. D. Jaén, P. Fornasiero, Appl. Catal. B 2016, 187, 171–180.
- 10
- 10aX.-H. Li, M. Antonietti, Chem. Soc. Rev. 2013, 42, 6593–6604;
- 10bY.-Y. Cai, X.-H. Li, Y.-N. Zhang, X. Wei, K.-X. Wang, J.-S. Chen, Angew. Chem. Int. Ed. 2013, 52, 11822–11825;
Angew. Chem. 2013, 125, 12038–12041;
10.1002/ange.201304652 Google Scholar
- 10cS. A. Ansari, M. H. Cho, Sustainable Energy Fuels 2017, 1, 510–519;
- 10dL. Wu, Q. Li, C. Yang, X. Ma, Z. Zhang, X. Cui, J. Mater. Chem. A 2018, 6, 20947–20955;
- 10eZ. Xu, C. Zhuang, Z. Zou, J. Wang, X. Xu, T. Peng, Nano Res. 2017, 10, 2193–2209.
- 11S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang, Energy Environ. Sci. 2015, 8, 731–759.
- 12
- 12aZ. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chem. Engineering Journal 2015, 260, 117–125;
- 12bA. Crake, K. C. Christoforidis, R. Godin, B. Moss, A. Kafizas, S. Zafeiratos, J. R. Durrant, C. Petit, Appl. Catal. B 2019, 242, 369–378;
- 12cB. Chai, T. Peng, J. Mao, K. Li, L. Zan, Phys. Chem. Chem. Phys. 2012, 14, 16745–16752;
- 12dX. Fan, T. Wang, B. Gao, H. Gong, H. Xue, H. Guo, L. Song, W. Xia, X. Huang, J. He, Langmuir 2016, 32, 13322–13332.
- 13K. C. Christoforidis, M. Fernandez-Garcia, Catal. Sci. Technol. 2016, 6, 1094–1105.
- 14X. Lan, L. Wang, B. Zhang, B. Tian, J. Zhang, Catal. Today 2014, 224, 163–170.
- 15M. Fittipaldi, V. Gombac, A. Gasparotto, C. Deiana, G. Adami, D. Barreca, T. Montini, G. Martra, D. Gatteschi, P. Fornasiero, ChemPhysChem 2011, 12, 2221–2224.
- 16M. Szkoda, K. Siuzdak, A. Lisowska-Oleksiak, J. Karczewski, J. Ryl, Electrochem. Commun. 2015, 60, 212–215.
- 17K. C. Christoforidis, M. Melchionna, T. Montini, D. Papoulis, E. Stathatos, S. Zafeiratos, E. Kordouli, P. Fornasiero, RSC Adv. 2016, 6, 86617–86626.
- 18A. Crake, K. C. Christoforidis, R. Godin, B. Moss, A. Kafizas, S. Zafeiratos, J. R. Durrant, C. Petit, Appl. Catal. B 2019, 242, 369–378.
- 19M. Quesada-González, N. D. Boscher, C. J. Carmalt, I. P. Parkin, ACS Appl. Mater. Interfaces 2016, 8, 25024–25029.
- 20M. Bettinelli, V. Dallacasa, D. Falcomer, P. Fornasiero, V. Gombac, T. Montini, L. Romano, A. Speghini, J. Hazard. Mater. 2007, 146, 529–534.
- 21
- 21aX. Zhou, B. Jin, L. Li, F. Peng, H. Wang, H. Yu, Y. Fang, J. Mater. Chem. 2012, 22, 17900–17905;
- 21bX. Zhou, F. Peng, H. Wang, H. Yu, Y. Fang, Chem. Commun. 2011, 47, 10323–10325.
- 22M. L. Guo, X. D. Zhang, C. T. Liang, Phys. B 2011, 406, 3354–3358.
- 23L. Mascaretti, V. Russo, G. Zoppellaro, A. Lucotti, C. S. Casari, S. Kment, A. Naldoni, A. L. Bassi, J. Phys. Chem. C 2019, 123, 11292–11303.
- 24
- 24aT. Berger, M. Sterrer, O. Diwald, E. Knozinger, ChemPhysChem 2005, 6, 2104–2112;
- 24bT. Berger, M. Sterrer, O. Diwald, E. Knozinger, D. Panayotov, T. L. Thompson, J. J. T. Yates, J. Phys. Chem. B 2005, 109, 6061–6068;
- 24cT. Berger, M. Sterrer, S. Stankic, J. Bernardi, O. Diwald, E. Knözinger, Mater. Sci. Eng. 2005, 25, 664–668;
- 24dM. Fittipaldi, D. Gatteschi, P. Fornasiero, Catal. Today 2013, 206, 2–11.
- 25R. Scotti, I. R. Bellobono, C. Canevali, C. Cannas, M. Catti, M. D'Arienzo, A. Musinu, S. Polizzi, M. Sommariva, A. Testino, F. Morazzoni, Chem. Mater. 2008, 20, 4051–4061.
- 26J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, J. Phys. Chem. C 2014, 118, 8462.
- 27
- 27aC. P. Kumar, N. O. Gopal, T. C. Wang, M.-S. Wong, S. C. Ke, J. Phys. Chem. B 2006, 110, 5223–5229;
- 27bS. O. Baumann, M. J. Elser, M. Auer, J. Bernardi, N. Husing, O. Diwald, Langmuir 2011, 27, 1946–1953;
- 27cM. D'Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, F. Morazzoni, J. Am. Chem. Soc. 2011, 133, 17652–17661;
- 27dH.-H. Lo, N. O. Gopal, S.-C. Sheu, S.-C. Ke, J. Phys. Chem. C 2014, 118, 2877–2884.
- 28
- 28aA. E. Giannakas, E. Seristatidou, Y. Deligiannakis, I. Konstantinou, Appl. Catal. B 2013, 132–133, 460–468;
- 28bS. Livraghi, A. Votta, M. C. Paganini, E. Giamello, Chem. Commun. 2005, 498–500;
- 28cD. Dvoranová, M. Mazúr, I. Papailias, T. Giannakopoulou, C. Trapalis, V. Brezová, Catalysts 2018, 8, 47.
- 29
- 29aD. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, A. A. Sokol, Nat. Mater. 2013, 12, 798–801;
- 29bH.-Z. Wu, L.-M. Liu, S.-J. Zhao, Phys. Chem. Chem. Phys. 2014, 16, 3299–3304;
- 29cY. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang, C. Zhou, W. Xiong, W. Wang, M. Cheng, W. Xue, H. Guo, X. Tang, D. He, Appl. Catal. B 2019, 258, 117956.
- 30Z. Wang, Z. Ni, D. Qiu, T. Chen, G. Tao, P. Yang, J. Anal. At. Spectrom. 2004, 19, 273–276.
- 31S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42–55.
- 32G. Carraro, C. Maccato, A. Gasparotto, T. Montini, S. Turner, O. I. Lebedev, V. Gombac, G. Adami, G. V. Tendeloo, D. Barreca, P. Fornasiero, Adv. Funct. Mater. 2014, 24, 372–378.