Immobilised Enzymes for Sesquiterpene Synthesis in Batch and Flow Systems
Dr. Donya Valikhani
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
Search for more papers by this authorDr. Prabhakar Lal Srivastava
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
Search for more papers by this authorCorresponding Author
Prof. Rudolf K. Allemann
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
Search for more papers by this authorCorresponding Author
Prof. Thomas Wirth
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
Search for more papers by this authorDr. Donya Valikhani
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
Search for more papers by this authorDr. Prabhakar Lal Srivastava
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
Search for more papers by this authorCorresponding Author
Prof. Rudolf K. Allemann
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
Search for more papers by this authorCorresponding Author
Prof. Thomas Wirth
School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT UK
Search for more papers by this authorGraphical Abstract
Sesquiterpene synthase immobilisation on controlled porosity glass through metal-ion affinity binding is exploited. This strategy improves enzyme reusability and allows for easier downstream processing and the development of continuous flow processes.
Abstract
Sesquiterpene synthases catalyse the bioconversion of farnesyl diphosphate into sesquiterpenes. The immobilisation of sesquiterpene synthases on controlled porosity glass through metal-ion affinity binding is reported. The immobilised sesquiterpene synthases were able to maintain 50 % catalytic activity for at least 50 cycles under continuous flow conditions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc201902135-sup-0001-misc_information.pdf986.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. M. Clouthier, J. N. Pelletier, Chem. Soc. Rev. 2012, 41, 1585–1605.
- 2
- 2aC. Oberhauser, V. Harms, K. Seidel, B. Schröder, K. Ekramzadeh, S. Beutel, S. Winkler, L. Lauterbach, J. S. Dickschat, A. Kirschning, Angew. Chem. Int. Ed. 2018, 57, 11802–11806;
Angew. Chem. 2018, 130, 11976–11980;
10.1002/ange.201805526 Google Scholar
- 2bD. W. Christianson, Chem. Rev. 2017, 117, 11570–11648;
- 2cD. J. Miller, R. K. Allemann, Nat. Prod. Rep. 2012, 29, 60–71;
- 2dD. E. Cane, Chem. Rev. 1990, 90, 1089–1103.
- 3
- 3aO. Cascón, G. Richter, R. K. Allemann, T. Wirth, ChemPlusChem 2013, 78, 1334–1337;
- 3bX. Tang, R. K. Allemann, T. Wirth, Eur. J. Org. Chem. 2017, 414–418.
- 4
- 4aA. Hinzmann, N. Adebar, T. Betke, M. Leppin, H. Gröger, Eur. J. Org. Chem. 2019, 6911–6916;
- 4bE. M. Sulman, V. G. Matveeva, L. M. Bronstein, Curr. Op. Chem. Engin. 2019, 26, 1–8;
- 4cR. C. Rodrigues, C. Ortiz, Á. Berenguer-Murcia, R. Torres, R. Fernández-Lafuente, Chem. Soc. Rev. 2013, 42, 6290–6307.
- 5S. Datta, L. R. Christena, Y. R. S. Rajaram, 3 Biotech 2013, 3, 1–9.
- 6W. Böhmer, T. Knaus, A. Volkov, T. K. Slot, N. R. Shiju, K. Engelmark Cassimjee, F. G. Mutti, J. Biotech. 2019, 291, 52–60.
- 7
- 7aM. P. Thompson, S. R. Derrington, R. S. Heath, J. L. Porter, J. Mangas-Sanchez, P. N. Devine, M. D. Truppo, N. J. Turner, Tetrahedron 2019, 75, 327–334;
- 7bW. Böhmer, T. Knaus, F. G. Mutti, ChemCatChem 2018, 10, 731–735.
- 8http://www.calctool.org/CALC/prof/bio/protein_length, 2019, accessed Nov 2019.
- 9X. Chen, C. Zhang, R. Zou, K. Zhou, G. Stephanopoulos, H. P. Too, PLoS One 2013, 8, e79650.
- 10X. Chen, C. Zhang, R. Zou, G. Stephanopoulos, H. P. Too, ACS Synth. Biol. 2017, 6, 1691–1700.
- 11D. Valikhani, J. M. Bolivar, A. Dennig, B. Nidetzky, Biotech. Bioengin. 2018, 115, 2416–2425.
- 12
- 12aM. P. Thompson, I. Peñafiel, S. C. Cosgrove, N. J. Turner, Org. Process Res. Develop. 2019, 23, 9–18;
- 12bJ. Britton, S. Majumdar, G. A. Weiss, Chem. Soc. Rev. 2018, 47, 5891–5918.
- 13D. J. Grundy, M. Chen, V. González, S. Leoni, D. J. Miller, D. W. Christianson, R. K. Allemann, Biochemistry 2016, 55, 2112–2121.
- 14D. E. Cane, R. M. Watt, Proc. Mont. Acad. Sci. 2003, 100, 1547–1551.