A Versatile Nb2O5/SnO2 Heterostructure for Different Environmental Purposes: Water Treatment and Artificial Photosynthesis
Thaís A. Rodrigues
Federal University of São Carlos, Sorocaba/SP, CEP, 18052-780 Brazil
Search for more papers by this authorPaulo H. E. Falsetti
Department of Physics, Federal University of São Carlos, São Carlos/SP, CEP, 13565-905 Brazil
Search for more papers by this authorDouglas M. S. Del Duque
Federal Institute of Science, Education and Technology of São Paulo, Itapetininga/SP, CEP, 18208-000 Brazil
Search for more papers by this authorDr. Gelson T. S. T. da Silva
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos/SP, CEP, 13561-260 Brazil
Search for more papers by this authorDr. Osmando F. Lopes
Laboratory of Photochemistry and Materials Science, Institute of Chemistry, Federal University of Uberlandia, Uberlandia/MG, CEP, 38400-902 Brazil
Institute of Energy and Climate Research (IEK-14), Electrochemical Process Engineering, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Search for more papers by this authorProf. Waldir Avansi
Department of Physics, Federal University of São Carlos, São Carlos/SP, CEP, 13565-905 Brazil
Search for more papers by this authorCaue Ribeiro
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos/SP, CEP, 13561-260 Brazil
Search for more papers by this authorCorresponding Author
Prof. Vagner R. de Mendonça
Federal University of São Carlos, Sorocaba/SP, CEP, 18052-780 Brazil
Federal Institute of Science, Education and Technology of São Paulo, Itapetininga/SP, CEP, 18208-000 Brazil
Search for more papers by this authorThaís A. Rodrigues
Federal University of São Carlos, Sorocaba/SP, CEP, 18052-780 Brazil
Search for more papers by this authorPaulo H. E. Falsetti
Department of Physics, Federal University of São Carlos, São Carlos/SP, CEP, 13565-905 Brazil
Search for more papers by this authorDouglas M. S. Del Duque
Federal Institute of Science, Education and Technology of São Paulo, Itapetininga/SP, CEP, 18208-000 Brazil
Search for more papers by this authorDr. Gelson T. S. T. da Silva
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos/SP, CEP, 13561-260 Brazil
Search for more papers by this authorDr. Osmando F. Lopes
Laboratory of Photochemistry and Materials Science, Institute of Chemistry, Federal University of Uberlandia, Uberlandia/MG, CEP, 38400-902 Brazil
Institute of Energy and Climate Research (IEK-14), Electrochemical Process Engineering, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
Search for more papers by this authorProf. Waldir Avansi
Department of Physics, Federal University of São Carlos, São Carlos/SP, CEP, 13565-905 Brazil
Search for more papers by this authorCaue Ribeiro
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos/SP, CEP, 13561-260 Brazil
Search for more papers by this authorCorresponding Author
Prof. Vagner R. de Mendonça
Federal University of São Carlos, Sorocaba/SP, CEP, 18052-780 Brazil
Federal Institute of Science, Education and Technology of São Paulo, Itapetininga/SP, CEP, 18208-000 Brazil
Search for more papers by this authorGraphical Abstract
Heterogeneous photocatalysis: The Nb2O5/SnO2 heterostructure, prepared by means of a facile hydrothermal method, showed higher photocatalytic performance for contaminant degradation, rhodamine B dye and amiloride medicine, and CO2 photoreduction, producing syngas. Besides, cationic species adsorption was higher over the heterostructure than isolated Nb2O5, showing the versatility of the as prepared heterostructured composite.
Abstract
A versatile Nb2O5/SnO2 heterostructure, adequate for different processes, was successfully synthesized by adding SnO2 to the hydrothermal Nb2O5 synthesis process. The presence of SnO2 dispersed over Nb2O5 did not modify its crystalline structure. On the other hand, the properties of the material were strongly affected by coupling the semiconductors. The heterostructure exhibited enhanced photocatalytic performance compared to pure Nb2O5 in the degradation of rhodamine B dye and the amiloride medication under UV radiation, as well as during CO2 photoreduction. Moreover, the heterostructured material was more efficient at removing the cationic species methylene blue dye and Mn (II) from the aqueous solution through adsorption than pure Nb2O5. Its versatility has been explained by reference to the negative surface charge induced by SnO2 and the charge separation in the heterostructure, which increases their lifetimes, making it possible to reach the surface of the material and promote the reaction in the oxidative and reductive processes. Our results indicate that coupled Nb2O5/SnO2 can be a unique platform to different forms of environmental treatment.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc202001569-sup-0001-misc_information.pdf214.6 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 2012, 13, 169–189.
- 2J. Mao, K. Li, T. Peng, Catal. Sci. Technol. 2013, 3, 2481–2498.
- 3S. R. Lingampalli, M. M. Ayyub, C. N. R. Rao, ACS Omega 2017, 2, 2740–2748.
- 4A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735–758.
- 5C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 2010, 39, 4206–4219.
- 6V. R. De Mendonça, O. F. Lopes, W. Avansi, R. Arenal, C. Ribeiro, Ceram. Int. 2019, 45, 22998–23006.
- 7T. R. Giraldi, G. V. F. Santos, V. R. De Mendonca, C. Ribeiro, I. T. Weber, Mater. Chem. Phys. 2012, 136, 505–511. Phys. 136 (2012) 505–511.
- 8P. Gonçalves, A. F. Barbosa, J. A. de Oliveira, R. Bertholdo, T. R. Giraldi, Int. J. Appl. Ceram. Technol. 2019, 16, 1501–1509.
- 9A. E. Nogueira, G. T. S. T. da Silva, J. A. Oliveira, J. A. Torres, M. G. S. da Silva, M. Carmo, C. Ribeiro, Catal. Commun. 2020, 137, 105929.
- 10X. He, C. Zhang, J. Mater. Sci. 2019, 54, 8831–8851.
- 11N. P. de Moraes, F. N. Silva, M. L. C. P. da Silva, T. M. B. Campos, G. P. Thim, L. A. Rodrigues, Mater. Chem. Phys. 2018, 214, 95–106.
- 12A. E. Nogueira, T. C. Ramalho, L. C. A. Oliveira, Top. Catal. 2011, 54, 270–276.
- 13N. T. do Prado, L. C. A. Oliveira, Appl. Catal. B 2017, 205, 481–488.
- 14A. M. Raba, J. Barba-Ortega, M. R. Joya, Appl. Phys. A 2015, 119, 923–928.
- 15O. F. Lopes, E. C. Paris, C. Ribeiro, Appl. Catal. B 2014, 144, 800–808.
- 16L. Wolski, A. Walkowiak, M. Ziolek, Mater. Res. Bull. 2019, 118.
- 17E. H. C. Lacerda, F. C. Monteiro, J. R. Kloss, S. T. Fujiwara, J. Photochem. Photobiol. A 2010, 388, 112084.
- 18G. T. S. T.. da Silva, A. E. Nogueira, J. A. Oliveira, J. A. Torres, O. F. Lopes, C. Ribeiro, Appl. Catal. B 2019, 242, 349–357.
- 19F. Nakagomi, S. E. Cerruti, M. R. de Freitas, E. S. Freitas Neto, F. V. de Andrade, G. O. Siqueira, Chem. Phys. Lett. 2019, 729, 37–41.
- 20V. R. De Mendonça, O. F. Lopes, A. E. Nogueira, G. T. S. T. da Silva, C. Ribeiro, Nanophotocatalysis and Environmental Applications, Environmental Chemistry for a Sustainable World Vol. 29, (Eds: Inamuddin, G. Sharma, A. Kumar, E. Lichtfouse, A. M. Asiri), Springer, 2019, pp. 107–138.
- 21V. R. De Mendonҫa, C. J. Dalmaschio, E. R. Leite, M. Niederberger, C. Ribeiro, J. Mater. Chem. A. 2015, 3, 2216–2225.
- 22R. T. Bueno, O. F. Lopes, K. T. G. Carvalho, C. Ribeiro, H. A. J. L. Mourão, Quim. Nova. 2019, 42, 661–675.
- 23N. P. Ferraz, F. C. F. Marcos, A. E. Nogueira, A. S. Martins, M. R. V. Lanza, E. M. Assaf, Y. J. O. Asencios, Mater. Chem. Phys. 2017, 198, 131–340.
- 24J. Yan, G. Wu, N. Guan, L. Li, Appl. Catal. B 2014, 152–153, 280–288
- 25V. R. De Mendonça, O. F. Lopes, R. P. Fregonesi, T. R. Giraldi, C. Ribeiro, Appl. Surf. Sci. 2014, 298, 182–191.
- 26S. Qianhong, Y. Hui, X. Qiang, Z. Yang, H. Rong, Mater. Lett. 2010, 64, 442–444.
- 27G. T. S. T. da Silva, K. T. G. Carvalho, O. F. Lopes, C. Ribeiro, Appl. Catal. B 2017, 216, 70–79.
- 28K. T. G. Carvalho, A. E. Nogueira, O. F. Lopes, G. Byzynski, C. Ribeiro, Ceram. Int. 2017, 43, 3521–3530.
- 29N. P. Ferraz, A. E. Nogueira, F. C. F. Marcos, V. A. Machado, R. R. Rocca, E. M. Assaf, Y. J. O. Asencios, Rare Met. 2019, 39, 230–240.
- 30D. Upadhaya, Talinungsang, P. Kumar, D. D. Purkayastha, Mater. Sci. Semicond. Process. 2019, 95, 28–34.
- 31X. Q. Qiao, Z. W. Zhang, D. F. Hou, D. S. Li, Y. Liu, Y. Q. Lan, J. Zhang, P. Feng, X. Bu, ACS Sustainable Chem. Eng. 2018, 6, 12375–12384.
- 32X. Ni, C. Chen, Q. Wang, Z. Li, Chem. Phys. 2019, 525, 110398.
- 33R. Fiz, F. Hernandez-Ramirez, T. Fischer, L. Lopez-Conesa, S. Estrade, F. Peiro, S. Mathur, J. Phys. Chem. C. 2013, 117, 10086–10094.
- 34E. R. Leite, E. J. H. Lee, T. R. Giraldi, F. M. Pontes, E. Longo, J. Nanosci. Nanotechnol. 2004, 4, 774–778.
- 35C. Ribeiro, E. J. H. Lee, T. R. Giraldi, E. Longo, J. A. Varela, E. R. Leite, J. Phys. Chem. B. 2004, 108, 15612–15617.
- 36E. R. Leite, C. Vila, J. Bettini, E. Longo, J. Phys. Chem. B. 2006, 110, 18088–18090.
- 37S. Katayama, Y. Ogawa, H. Hayashi, F. Oba, I. Tanaka, J. Cryst. Growth. 2015, 416, 126–129.
- 38A. Diéguez, A. Romano-Rodríguez, A. Vilà, J. R. Morante, J. Appl. Phys. 2001, 90, 1550–1557.
- 39R. F. Brandão, R. L. Quirino, V. M. Mello, A. P. Tavares, A. C. Peres, F. Guinhos, J. C. Rubim, P. A. Z. Suarez, J. Braz. Chem. Soc. 2009, 20, 954–966.
- 40C. M. P. Cecchi, D. Cesarín-Sobrinho, A. B. B. Ferreira, J. C. Netto-Ferreira, Catalysts. 2018, 8.
- 41V. R. de Mendonça, H. A. J. L. Mourão, A. R. Malagutti, C. Ribeiro, Photochem. Photobiol. 2014, 90, 66–72.
- 42I. N. Levine, Physical Chemistry, 6th ed., Higher Education, New York, 2009.
- 43W. Avansi, V. R. De Mendonça, O. F. Lopes, C. Ribeiro, RSC Adv. 2015, 5, 12000–12006.
- 44S. Kant, D. Pathania, P. Singh, P. Dhiman, A. Kumar, Appl. Catal. B 2014, 147, 340–352.
- 45A. K. Kharade, S. Chang, J. Phys. Chem. C. 2020, 124, 10981–10992.
- 46G. B. Damas, C. R. Miranda, R. Sgarbi, J. M. Portela, M. R. Camilo, F. H. B. Lima, C. M. Araujo, Catalysts. 2019, 9.
- 47L. Wang, W. Chen, D. Zhang, Y. Du, R. Amal, S. Qiao, J. Wu, Z. Yin, Chem. Soc. Rev. 2019, 48, 5310–5349.
- 48F. Urbain, P. Tang, N. M. Carretero, T. Andreu, L. G. Gerling, C. Voz, J. Arbiol, J. R. Morante, Energy Environ. Sci. 2017, 10, 2256–2266.
- 49W. Sheng, S. Kattel, S. Yao, B. Yan, Z. Liang, C. J. Hawxhurst, Q. Wu, J. G. Chen, Energy Environ. Sci. 2017, 10, 1180–1185.
- 50J. Tauc, Mater. Res. Bull. 1970, 5, 721–729.
- 51A. B. Murphy, Sol. Energy Mater. Sol. Cells. 2007, 91, 1326–1337.
- 52V. R. de Mendonça, C. Ribeiro, Appl. Catal. B 2011, 105, 298–305.
- 53K. T. G. Carvalho, O. F. Lopes, D. C. Ferreira, C. Ribeiro, J. Alloys Compd. 2019, 797, 1299–1309.
- 54J. A. Torres, A. E. Nogueira, G. T. S. T. da Silva, O. F. Lopes, Y. Wang, T. He, C. Ribeiro, J. CO2 Util. 2020, 35, 106–114.