Revealing the Catalytic Role of Sn Dopant in CO2-Oxidative Dehydrogenation of Propane over Pt/Sn-CeO2 Catalyst
Corresponding Author
Yehong Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJiapei Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorYuda Zhang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorDr. Qiang Guo
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorJie An
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorYafei Liang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorYanan Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorDr. Pengfei Cao
Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich, 52425 Germany
Search for more papers by this authorProf. Marc Heggen
Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich, 52425 Germany
Search for more papers by this authorProf. Rafal E. Dunin-Borkowski
Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich, 52425 Germany
Search for more papers by this authorProf. Xiangxue Zhu
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiujie Li
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorProf. Feng Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Yehong Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorJiapei Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorYuda Zhang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorDr. Qiang Guo
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorJie An
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorYafei Liang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorYanan Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorDr. Pengfei Cao
Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich, 52425 Germany
Search for more papers by this authorProf. Marc Heggen
Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich, 52425 Germany
Search for more papers by this authorProf. Rafal E. Dunin-Borkowski
Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Juelich GmbH, Juelich, 52425 Germany
Search for more papers by this authorProf. Xiangxue Zhu
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xiujie Li
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorProf. Feng Wang
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023 P. R. China
Search for more papers by this authorGraphical Abstract
A Pt/Sn-CeO2 catalyst shows a higher catalytic activity in CO2-oxidative dehydrogenation of propane than a Pt/CeO2 catalyst. It derives from the crucial role of Sn dopant. The Sn doping not only increases the electron density of Pt species via PtSn alloy formation but also enhances oxygen vacancy concentrations of CeO2 support, leading to the enhancement of propane adsorption and CO2 dissociation.
Abstract
CO2-oxidative dehydrogenation of propane (CO2-ODHP) provides a promising route for propylene production. Sufficient propane conversion and propylene selectivity remain a great challenge due to the difficulty in activating inert propane and CO2 simultaneously. Herein, a Sn doped CeO2 supported Pt (Pt/Sn-CeO2) catalyst in CO2-ODHP reaction is reported. Sn doping appears to kill two birds with one stone for propane and CO2 activation. On the one side, it increases the electron density of Pt species via PtSn alloy formation, promoting propane adsorption and C−H bond cleavage. On the other side, it enhances oxygen vacancy concentrations of CeO2 support, facilitating CO2 dissociation. A higher propylene selectivity (63.9 % vs 22.3 %) was obtained on 0.1 wt % Pt/1.0 wt % Sn-CeO2 than that on 0.1 wt % Pt/CeO2 with a comparable propane conversion (15.1 % vs 14.3 %) at 550 °C after 240 min on stream. This work provides a reference for designing efficient catalysts.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc202200982-sup-0001-misc_information.pdf622.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Jiang, L. Sharma, V. Fung, S. J. Park, C. W. Jones, B. G. Sumpter, J. Baltrusaitis, Z. L. Wu, ACS Catal. 2021, 11, 2182–2234.
- 2J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev. 2014, 114, 10613–10653.
- 3M. B. Ansari, S. E. Park, Energy Environ. Sci. 2012, 5, 9419–9437.
- 4R. You, X. Y. Zhang, L. F. Luo, Y. Pan, H. B. Pan, J. Z. Yang, L. H. Wu, X. S. Zheng, Y. K. Jin, W. X. Huang, J. Catal. 2017, 348, 189–199.
- 5K. M. Du, M. J. Hao, Z. N. Li, W. Hong, J. J. Liu, L. P. Xiao, S. H. Zou, H. Kobayashi, J. Fan, Chin. J. Catal. 2019, 40, 1057–1062.
- 6M. A. Atanga, F. Rezaei, A. Jawad, M. Fitch, A. A. Rownaghi, Appl. Catal. B 2018, 220, 429–445.
- 7E. Gomez, B. H. Yan, S. Kattel, J. G. G. Chen, Nat. Chem. Rev. 2019, 3, 638–649.
- 8A. Alvarez, M. Borges, J. J. Corral-Perez, J. G. Olcina, L. J. Hu, D. Cornu, R. Huang, D. Stoian, A. Urakawa, ChemPhysChem 2017, 18, 3135–3141.
- 9F. L. Xing, Y. Nakaya, S. Yasumura, K. Shimizu, S. Furukawa, Nat. Catal. 2022, 5, 55–65.
- 10R. Ryoo, J. Kim, C. Jo, S. W. Han, J. C. Kim, H. Park, J. Han, H. S. Shin, J. W. Shin, Nature 2020, 585, 221–224.
- 11G. D. Sun, Z. J. Zhao, R. T. Mu, S. J. Zha, L. L. Li, S. Chen, K. T. Zang, J. Luo, Z. L. Li, S. C. Purdy, A. J. Kropf, J. T. Miller, L. Zeng, J. L. Gong, Nat. Commun. 2018, 9, 4454.
- 12Z. Wang, Y. Z. Chen, S. J. Mao, K. J. Wu, K. C. Zhang, Q. C. Li, Y. Wang, Adv. Sustainable Syst. 2020, 4, 2000092.
- 13J. Wu, Z. M. Peng, A. T. Bell, J. Catal. 2014, 311, 161–168.
- 14G. J. Siri, J. M. Ramallo-Lopez, M. L. Casella, J. L. G. Fierro, F. G. Requejo, O. A. Ferretti, Appl. Catal. A 2005, 278, 239–249.
- 15E. Nowicka, C. Reece, S. M. Althahban, K. M. H. Mohammed, S. A. Kondrat, D. J. Morgan, Q. He, D. J. Willock, S. Golunski, C. J. Kiely, G. J. Hutchings, ACS Catal. 2018, 8, 3454–3468.
- 16A. Parastaev, V. Muravev, E. H. Osta, A. J. F. Van Hoof, T. F. Kimpel, N. Kosinov, E. J. M. Hensen, Nat. Catal. 2020, 3, 526–533.
- 17K. Tomishige, Y. Gu, T. Chang, M. Tamura, Y. Nakagawa, Mater. Today Sustain. 2020, 9, 100035.
- 18L. J. Lei, Y. H. Wang, Z. X. Zhang, J. H. An, F. Wang, ACS Catal. 2020, 10, 8788–8814.
- 19Z. Y. Liu, F. Zhang, N. Rui, X. Li, L. L. Lin, L. E. Betancourt, D. Su, W. Q. Xu, J. J. Cen, K. Attenkofer, H. Idriss, J. A. Rodriguez, S. D. Senanayake, ACS Catal. 2019, 9, 3349–3359.
- 20E. Gomez, Z. H. Xie, J. G. G. Chen, AIChE J. 2019, 65, e16670.
- 21F. Wang, M. Wei, D. G. Evans, X. Duan, J. Mater. Chem. A 2016, 4, 5773–5783.
- 22J. J. Liu, M. J. Hao, C. L. Chen, K. M. Du, Q. Y. Zhou, S. H. Zou, L. P. Xiao, J. Fan, Appl. Surf. Sci. 2020, 528, 147025.
- 23T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem. Rev. 2016, 116, 5987–6041.
- 24H. F. Xiong, S. Lin, J. Goetze, P. Pletcher, H. Guo, L. Kovarik, K. Artyushkova, B. M. Weckhuysen, A. K. Datye, Angew. Chem. Int. Ed. 2017, 56, 8986–8991;
- 25C. L. Yu, Q. J. Ge, H. Y. Xu, W. Z. Li, Appl. Catal. A 2006, 315, 58–67.
- 26L. Wang, G. Q. Yang, X. Ren, Z. W. Liu, Nanomaterials 2022, 12, 417.
- 27Z. X. Zhang, Y. H. Wang, J. M. Lu, J. Zhang, M. R. Li, X. B. Liu, F. Wang, ACS Catal. 2018, 8, 2635–2644.
- 28Z. X. Zhang, Y. H. Wang, J. M. Lu, C. F. Zhang, M. Wang, M. R. Li, X. B. Liu, F. Wang, ACS Catal. 2016, 6, 8248–8254.
- 29H. D. Wang, G. Tsilomelekis, Catal. Sci. Technol. 2020, 10, 4362–4372.
- 30Y. H. Wang, M. Peng, J. Zhang, Z. X. Zhang, J. H. An, S. Y. Du, H. Y. An, F. T. Fan, X. Liu, P. Zhai, D. Ma, F. Wang, Nat. Commun. 2018, 9, 5183.
- 31Y. H. Wang, F. Wang, Q. Song, Q. Xin, S. T. Xu, J. Xu, J. Am. Chem. Soc. 2013, 135, 1506–1515.
- 32J. F. Liu, W. Zhou, D. Y. Jiang, D. Wang, W. H. Wu, Y. Wang, X. B. Ma, Catal. Today 2021, 368, 58–65.
- 33P. Venkataswamy, K. N. Rao, D. Jampaiah, B. M. Reddy, Appl. Catal. B 2015, 162, 122–132.
- 34Y. H. Wang, Z. X. Zhang, L. J. Lei, W. Liu, S. Y. Du, X. X. Zhu, X. J. Li, F. Wang, ACS Sustainable Chem. Eng. 2021, 9, 17301–17309.
- 35E. Gomez, S. Kattel, B. H. Yan, S. Y. Yao, P. Liu, J. G. G. Chen, Nat. Commun. 2018, 9, 1398.
- 36X. I. Pcrcira-Hcrnandcz, A. Delariva, V. Muravev, D. Kunwar, H. Xiong, B. Sudduth, M. Engelhard, L. Kovarlk, E. J. M. Hcnscn, Y. Wang, A. K. Datye, Nat. Commun. 2019, 10, 1358.
- 37R. Burch, J. Catal. 1981, 71, 348–359.
- 38C. Larese, J. M. Campos-Martin, J. J. Calvino, G. Blanco, J. L. G. Fierro, Z. C. Kang, J. Catal. 2002, 208, 467–478.
- 39K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science 2015, 350, 189–192.
- 40G. J. Kim, D. W. Kwon, S. C. Hong, J. Phys. Chem. C 2016, 120, 17996–18004.
- 41J. S. Xu, C. X. Shi, S. G. Zhang, Q. C. Zheng, L. Pan, X. W. Zhang, J. J. Zou, Chin. J. Chem. 2022, 40, 918–924.
- 42Y. C. Pei, Z. Y. Qi, T. W. Goh, L. L. Wang, R. V. Maligal-Ganesh, H. L. Macmurdo, S. R. Zhang, C. X. Xiao, X. L. Li, F. Tao, D. D. Johnson, W. Y. Huang, J. Catal. 2017, 356, 307–314.
- 43A. M. D. De Farias, D. Nguyen-Thanh, M. A. Fraga, Appl. Catal. B 2010, 93, 250–258.
- 44M. Guo, J. Q. Lu, Y. N. Wu, Y. J. Wang, M. F. Luo, Langmuir 2011, 27, 3872–3877.
- 45S. Loridant, Catal. Today 2021, 373, 98–111.
- 46B. Wang, X. D. Wu, R. Ran, Z. C. Si, D. Weng, J. Mol. Catal. A 2012, 356, 100–105.
- 47M. A. Hasan, M. I. Zaki, L. Pasupulety, J. Phys. Chem. B 2002, 106, 12747–12756.
- 48W. L. S. Faria, C. A. C. Perez, D. V. Cesar, L. C. Dieguez, M. Schmal, Appl. Catal. B 2009, 92, 217–224.
- 49T. Y. Deng, H. C. Liu, Green Chem. 2013, 15, 116–124.
- 50R. Prins, Chem. Rev. 2012, 112, 2714–2738.
- 51M. M. Bettahar, Catal. Rev. 2022, 64, 87–125.