Insights from Enzymatic Catalysis: A Path towards Bioinspired High-Performance Electrocatalysts
Dr. Graziela C. Sedenho
São Carlos Institute of Chemistry, University of São Paulo (USP), Avenida Trabalhador São-carlense, 400, São Carlos, SP 13566-590 Brazil
These authors equally contributed to this work.
Search for more papers by this authorDr. Rafael N. P. Colombo
São Carlos Institute of Chemistry, University of São Paulo (USP), Avenida Trabalhador São-carlense, 400, São Carlos, SP 13566-590 Brazil
These authors equally contributed to this work.
Search for more papers by this authorCorresponding Author
Prof. Frank N. Crespilho
São Carlos Institute of Chemistry, University of São Paulo (USP), Avenida Trabalhador São-carlense, 400, São Carlos, SP 13566-590 Brazil
Search for more papers by this authorDr. Graziela C. Sedenho
São Carlos Institute of Chemistry, University of São Paulo (USP), Avenida Trabalhador São-carlense, 400, São Carlos, SP 13566-590 Brazil
These authors equally contributed to this work.
Search for more papers by this authorDr. Rafael N. P. Colombo
São Carlos Institute of Chemistry, University of São Paulo (USP), Avenida Trabalhador São-carlense, 400, São Carlos, SP 13566-590 Brazil
These authors equally contributed to this work.
Search for more papers by this authorCorresponding Author
Prof. Frank N. Crespilho
São Carlos Institute of Chemistry, University of São Paulo (USP), Avenida Trabalhador São-carlense, 400, São Carlos, SP 13566-590 Brazil
Search for more papers by this authorGraphical Abstract
Metalloenzymes are exceptional catalysts for redox reactions with technological applications. The chemical environment of the active metal centers at the three-dimensional pockets plays a crucial role in lowering the activation energy of a catalytic reaction. This aspect should be considered inthe development of high-performance bioinspired electrocatalysts.
Abstract
Enzymes, especially some metalloenzymes, are exceptional catalysts for redox reactions with technological applications in several fields, including energy conversion systems and producing fuels and value-added chemicals. Because of that, they have inspired the development of synthetic catalysts to obtain high-performance materials. However, several fundamental aspects should be better understood to achieve this goal, such as enzyme catalysis and the role of the three-dimensional catalytic site. Therefore, this review addresses key structural and activity aspects of some remarkable metalloenzymes and discusses three-dimensional catalysis as an approach to enzyme catalysis. Also, the case of the multicopper oxidase enzymes is shown as an example of how the three-dimensional coordination environment of the copper ions in the active site can impact catalysis.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1H. Sepasi Tehrani, A. A. Moosavi-Movahedi, Prog. Biophys. Mol. Biol. 2018, 140, 5.
- 2G. B. Smejkal, S. Kakumanu, Expert Rev. Proteomics 2019, 16, 543.
- 3M. E. Davis, J. D. Madura, J. Sines, B. A. Luty, S. A. Allison, J. A. McCammon, in Methods Enzymol., 1991, pp. 473–497.
- 4L. Pitulice, E. Vilaseca, I. Pastor, S. Madurga, J. L. Garcés, A. Isvoran, F. Mas, Math. Biosci. 2014, 251, 72.
- 5G. C. Sedenho, A. Hassan, J. C. P. De Souza, F. N. Crespilho, Curr. Opin. Electrochem. 2022, 34, 101015.
- 6R. N. P. Colombo, G. C. Sedenho, F. N. Crespilho, Chem. Mater. 2022, 34, 10211.
- 7L. J. A. Macedo, A. A. E. Santo, G. C. Sedenho, A. Hassan, R. M. Iost, G. T. Feliciano, F. N. Crespilho, J. Catal. 2021, 401, 200.
- 8L. J. A. Macedo, A. Hassan, G. C. Sedenho, F. N. Crespilho, Nat. Commun. 2020, 11, 316.
- 9S. Kozuch, J. M. L. Martin, ACS Catal. 2012, 2, 2787.
- 10R. J. Hooley, Nat. Chem. 2016, 8, 202.
- 11H. N. Kirkman, G. F. Gaetani, Trends Biochem. Sci. 2007, 32, 44.
- 12M. Salvi, V. Battaglia, A. M. Brunati, N. La Rocca, E. Tibaldi, P. Pietrangeli, L. Marcocci, B. Mondovi, C. A. Rossi, A. Toninello, J. Biol. Chem. 2007, 282, 24407.
- 13Y. Shi, L.-F. Luo, X.-M. Liu, Q. Zhou, S.-Z. Xu, T.-C. Lei, PLoS One 2014, 9, e93589.
- 14J. W. Whittaker, Arch. Biochem. Biophys. 2012, 525, 111.
- 15V. V. Barynin, M. M. Whittaker, S. V. Antonyuk, V. S. Lamzin, P. M. Harrison, P. J. Artymiuk, J. W. Whittaker, Structure 2001, 9, 725.
- 16C. D. Putnam, A. S. Arvai, Y. Bourne, J. A. Tainer, J. Mol. Biol. 2000, 296, 295.
- 17M. Alfonso-Prieto, X. Biarnés, P. Vidossich, C. Rovira, J. Am. Chem. Soc. 2009, 131, 11751.
- 18S. Talekar, B. H. Jo, J. S. Dordick, J. Kim, Curr. Opin. Biotechnol. 2022, 74, 230.
- 19C. T. Supuran, Biochem. J. 2016, 473, 2023.
- 20Y. Xu, L. Feng, P. D. Jeffrey, Y. Shi, F. M. M. Morel, Nature 2008, 452, 56.
- 21R. Ma, G. F. Schuette, L. J. Broadbelt, Appl. Catal. A 2015, 492, 151.
- 22C. T. Supuran, Bioorg. Med. Chem. Lett. 2010, 20, 3467.
- 23T. Li, E. W. Lees, M. Goldman, D. A. Salvatore, D. M. Weekes, C. P. Berlinguette, Joule 2019, 3, 1487.
- 24Y. Tobolovskaya, J. J. Medvedev, X. V. Medvedeva, M. S. Mesbahuddin, N. E. N. Rodriguez, S. Kalyaanamoorthy, A. Klinkova, J. CO2 Util. 2023, 71, 102461.
- 25O. Gutiérrez-Sánchez, B. Bohlen, N. Daems, M. Bulut, D. Pant, T. Breugelmans, ChemElectroChem 2022, 9, 10.1002/celc.202101540.
10.1002/celc.202101540 Google Scholar
- 26C. Cammaroto, L. Diliberto, M. Ferralis, R. Manca, A. Sanna, M. Giordano, Sens. Actuators B 1998, 48, 439.
- 27S. J. Cobb, V. M. Badiani, A. M. Dharani, A. Wagner, S. Zacarias, A. R. Oliveira, I. A. C. Pereira, E. Reisner, Nat. Chem. 2022, 14, 417.
- 28S. J. Cobb, A. M. Dharani, A. R. Oliveira, I. A. C. Pereira, E. Reisner, Angew. Chem. Int. Ed. 2023, 62, e202218782.
- 29L. Quintanar, C. Stoj, A. B. Taylor, P. J. Hart, D. J. Kosman, E. I. Solomon, Acc. Chem. Res. 2007, 40, 445.
- 30G. C. Sedenho, A. Hassan, L. J. A. Macedo, F. N. Crespilho, J. Power Sources 2021, 482, 10.1016/j.jpowsour.2020.229035.
10.1016/j.jpowsour.2020.229035 Google Scholar
- 31N. Mano, A. de Poulpiquet, Chem. Rev. 2017, 118, 2392.
- 32M. Pita, D. M. Mate, D. Gonzalez-perez, S. Shleev, V. M. Fernandez, M. Alcalde, A. L. De Lacey, J. Am. Chem. Soc. 2014, 136, 5892–5895.
- 33R. M. Evans, B. Siritanaratkul, C. F. Megarity, K. Pandey, T. F. Esterle, S. Badiani, F. A. Armstrong, Chem. Soc. Rev. 2019, 48, 2039.
- 34G. C. Sedenho, I. T. Neckel, R. N. P. Colombo, J. C. Pacheco, T. Bertaglia, F. N. Crespilho, Adv. Energy Mater. 2022, 12, 2202485.
- 35A. Sekretaryova, S. M. Jones, E. I. Solomon, J. Am. Chem. Soc. 2019, 141, 11304.
- 36L. Dos Santos, V. Climent, C. F. Blanford, F. A. Armstrong, Phys. Chem. Chem. Phys. 2010, 12, 13962.
- 37C. W. Lee, H. B. Gray, F. C. Anson, B. G. Malmström, J. Electroanal. Chem. 1984, 172, 289.
- 38M. Frasconi, G. Favero, H. Boer, A. Koivula, F. Mazzei, Biochim. Biophys. Acta Proteins Proteomics 2010, 1804, 899.
- 39P. H. M. Buzzetti, A. Berezovska, Y. Nedellec, S. Cosnier, Nanomaterials 2022, 12, 10.3390/nano12142399.
- 40C. Gutierrez-Sanchez, A. Ciaccafava, P. Y. Blanchard, K. Monsalve, M. T. Giudici-Orticoni, S. Lecomte, E. Lojou, ACS Catal. 2016, 6, 5482.
- 41N. Bourassin, M. Baaden, E. Lojou, S. Sacquin-Mora, J. Phys. Chem. B 2020, 124, 8516.
- 42M. Miyata, Y. Kitazumi, O. Shirai, K. Kataoka, K. Kano, J. Electroanal. Chem. 2020, 860, 113895.
- 43L. Zhang, H. Cui, Z. Zou, T. M. Garakani, C. Novoa-Henriquez, B. Jooyeh, U. Schwaneberg, Angew. Chem. Int. Ed. 2019, 58, 4562.
- 44T. Adachi, I. Mazurenko, N. Mano, Y. Kitazumi, K. Kataoka, K. Kano, K. Sowa, E. Lojou, Electrochim. Acta 2022, 429, 140987.
- 45L. B. Maia, I. Moura, J. J. G. Moura, Inorg. Chim. Acta 2017, 455, 350.
- 46G. Fan, P. Wasuwanich, A. L. Furst, ChemBioChem 2021, 22, 2353.
- 47T. M. Gill, A. L. Furst, Curr. Opin. Electrochem. 2022, 35, 101061.
- 48A. Bassegoda, C. Madden, D. W. Wakerley, E. Reisner, J. Hirst, J. Am. Chem. Soc. 2014, 136, 15473–15476.
- 49W. E. Robinson, A. Bassegoda, E. Reisner, J. Hirst, J. Am. Chem. Soc. 2017, 139, 9927–9936.
- 50W. E. Robinson, A. Bassegoda, J. N. Blaza, E. Reisner, J. Hirst, J. Am. Chem. Soc. 2020, 142, 12226.
- 51C. M. Cordas, M. Campaniço, R. Baptista, L. B. Maia, I. Moura, J. Inorg. Biochem. 2019, 196, 110694.
- 52T. Reda, C. M. Plugge, N. J. Abram, J. Hirst, Proc. Nat. Acad. Sci. 2008, 105, 10654.
- 53M. Miller, W. E. Robinson, A. R. Oliveira, N. Heidary, N. Kornienko, J. Warnan, I. Þ A C Pereira, E. Reisner, Angew. Chem. Int. Ed. 2019, 131, 4649.
10.1002/ange.201814419 Google Scholar
- 54J. C. Boyington, V. N. Gladyshev, S. V. Khangulov, T. C. Stadtman, P. D. Sun, Science 1997, 275, 1305.
- 55L. B. Maia, L. Fonseca, I. Moura, J. J. G. Moura, J. Am. Chem. Soc. 2016, 138, 8834.
- 56R. D. Milton, R. Cai, S. Abdellaoui, D. Leech, A. L. De Lacey, M. Pita, S. D. Minteer, Angew. Chem. Int. Ed. 2017, 56, 2680.
- 57R. D. Milton, S. D. Minteer, Acc. Chem. Res. 2019, 52, 3351.
- 58D. P. Hickey, K. Lim, R. Cai, A. R. Patterson, M. Yuan, S. Sahin, S. Abdellaoui, S. D. Minteer, Chem. Sci. 2018, 9, 5172.
- 59B. K. Burgess, D. J. Lowe, Chem. Rev. 1996, 96, 2983.
- 60A. Badalyan, Z. Y. Yang, L. C. Seefeldt, ACS Catal. 2019, 9, 1366.
- 61K. Danyal, B. S. Inglet, K. A. Vincent, B. M. Barney, B. M. Hoffman, F. A. Armstrong, D. R. Dean, L. C. Seefeldt, J. Am. Chem. Soc. 2010, 132, 13197.
- 62L. Rao, X. Xu, C. Adamo, ACS Catal. 2016, 6, 1567.
- 63W. Kang, C. C. Lee, A. J. Jasniewski, M. W. Ribbe, Y. Hu, Science 2020, 371, 1381.
10.1126/science.aaz6748 Google Scholar
- 64W. Lubitz, M. Chrysina, N. Cox, Photosynth. Res. 2019, 142, 105.
- 65W. Junge, Q. Rev. Biophys. 2019, 52, e1.
- 66M. Suga, F. Akita, K. Hirata, G. Ueno, H. Murakami, Y. Nakajima, T. Shimizu, K. Yamashita, M. Yamamoto, H. Ago, J.-R. Shen, Nature 2015, 517, 99.
- 67Y. Zhang, D. Masuzaki, F. Mafuné, Chem. Commun. 2019, 55, 14327.
- 68J. Z. Zhang, P. Bombelli, K. P. Sokol, A. Fantuzzi, A. W. Rutherford, C. J. Howe, E. Reisner, J. Am. Chem. Soc. 2018, 140, 6.
- 69M. Kato, T. Cardona, A. W. Rutherford, E. Reisner, J. Am. Chem. Soc. 2013, 135, 10610.
- 70M. Xuan, J. Li, Natl. Sci. Rev. 2021, 8, 10.1093/nsr/nwab051.
10.1093/nsr/nwab051 Google Scholar
- 71D. W. Mulder, E. M. Shepard, J. E. Meuser, N. Joshi, P. W. King, M. C. Posewitz, J. B. Broderick, J. W. Peters, Structure 2011, 19, 1038.
- 72J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 2007, 107, 4273.
- 73M. E. Ahmed, A. Nayek, A. Križan, N. Coutard, A. Morozan, S. Ghosh Dey, R. Lomoth, L. Hammarström, V. Artero, A. Dey, J. Am. Chem. Soc. 2022, 144, 3614.
- 74V. M. Ramos, A. G. S. de Oliveira-Filho, A. P. de Lima Batista, J. Phys. Chem. A 2022, 126, 2082.
- 75R. Huber, T. Wilharm, D. Huber, A. Trincone, S. Burggraf, H. König, R. Reinhard, I. Rockinger, H. Fricke, K. O. Stetter, Syst. Appl. Microbiol. 1992, 15, 340.
- 76K. Schuchmann, V. Müller, J. Biol. Chem. 2012, 287, 31165.
- 77A. Kröger, S. Biel, J. Simon, R. Gross, G. Unden, C. R. D. Lancaster, Biochim. Biophys. Acta Bioenerg. 2002, 1553, 23.
- 78K. Gutekunst, X. Chen, K. Schreiber, U. Kaspar, S. Makam, J. Appel, J. Biol. Chem. 2014, 289, 930.
- 79G. J. Schut, M. W. W. Adams, J. Bacteriol. 2009, 191, 4451.
- 80Y. Sugimoto, Y. Kitazumi, O. Shirai, K. Nishikawa, Y. Higuchi, M. Yamamoto, K. Kano, Biochim. Biophys. Acta Proteins Proteomics 2017, 1865, 481.
- 81C. Baffert, A. Kpebe, L. Avilan, M. Brugna, Adv. Microb. Physiol. 2019, 74, 143.
- 82S. T. Stripp, B. R. Duffus, V. Fourmond, C. Léger, S. Leimkühler, S. Hirota, Y. Hu, A. Jasniewski, H. Ogata, M. W. Ribbe, Chem. Rev. 2022, 122, 11900.
- 83G. Hong, R. Pachter, ACS Chem. Biol. 2012, 7, 1268.
- 84S. T. Stripp, G. Goldet, C. Brandmayr, O. Sanganas, K. A. Vincent, M. Haumann, F. A. Armstrong, T. Happe, Proc. Natl. Acad. Sci. USA 2009, 106, 17331.
- 85J. Cohen, K. Kim, P. King, M. Seibert, K. Schulten, Structure 2005, 13, 1321.
- 86Y. Wang, Z. Kang, L. Zhang, Z. Zhu, ACS Catal. 2022, 12, 1415.
- 87C. Wombwell, C. A. Caputo, E. Reisner, Acc. Chem. Res. 2015, 48, 2858.
- 88J. W. Peters, G. J. Schut, E. S. Boyd, D. W. Mulder, E. M. Shepard, J. B. Broderick, P. W. King, M. W. W. Adams, Biochim. Biophys. Acta Mol. Cell Res. 2015, 1853, 1350.
- 89M. Bruschi, M. Tiberti, A. Guerra, L. De Gioia, J. Am. Chem. Soc. 2014, 136, 1803.
- 90K. Monsalve, I. Mazurenko, C. Gutierrez-Sanchez, M. Ilbert, P. Infossi, S. Frielingsdorf, M. T. Giudici-Orticoni, O. Lenz, E. Lojou, ChemElectroChem 2016, 3, 2179.
- 91A. Rutz, C. K. Das, A. Fasano, J. Jaenecke, S. Yadav, U. P. Apfel, V. Engelbrecht, V. Fourmond, C. Léger, L. V. Schäfer, T. Happe, ACS Catal. 2023, 13, 856.
- 92Y. Nicolet, C. Cavazza, J. C. Fontecilla-Camps, J. Inorg. Biochem. 2002, 91, 1.
- 93M. Salomone-Stagni, F. Stellato, C. M. Whaley, S. Vogt, S. Morante, S. Shima, T. B. Rauchfuss, W. Meyer-Klaucke, Dalton Trans. 2010, 39, 3057.
- 94S. Shima, S. Vogt, A. Göbels, E. Bill, Angew. Chem. Int. Ed. 2010, 49, 9917.
- 95M. Sensi, M. del Barrio, C. Baffert, V. Fourmond, C. Léger, Curr. Opin. Electrochem. 2017, 5, 135.
- 96B. L. Greene, G. E. Vansuch, C. H. Wu, M. W. W. Adams, R. B. Dyer, J. Am. Chem. Soc. 2016, 138, 13013.
- 97A. Vazhayil, L. Vazhayal, J. Thomas, S. Ashok C, N. Thomas, Appl. Surf. Sci. Adv. 2021, 6, 100184.
10.1016/j.apsadv.2021.100184 Google Scholar
- 98Q. Shi, C. Zhu, D. Du, Y. Lin, Chem. Soc. Rev. 2019, 48, 3181.
- 99S. Zhang, X. Zhang, Y. Rui, R. Wang, X. Li, Green Energy & Environ. 2021, 6, 458.
- 100X. Lu, Z. Jiang, X. Yuan, Y. Wu, R. Malpass-Evans, Y. Zhong, Y. Liang, N. B. McKeown, H. Wang, Sci. Bull. 2019, 64, 1890.
- 101A. M. Geer, C. Musgrave, C. Webber, R. J. Nielsen, B. A. McKeown, C. Liu, P. P. M. Schleker, P. Jakes, X. Jia, D. A. Dickie, J. Granwehr, S. Zhang, C. W. Machan, W. A. Goddard, T. B. Gunnoe, ACS Catal. 2021, 11, 7223.
- 102N. Zion, A. Friedman, N. Levy, L. Elbaz, Adv. Mater. 2018, 30, 1800406.
- 103Y. Peng, S. Sanati, A. Morsali, H. García, Angew. Chem. Int. Ed. 2023, 62, e202214707.
- 104M. T. M. Koper, J. Electroanal. Chem. 2005, 574, 375.
- 105M. T. M. Koper, Chem. Sci. 2013, 4, 2710.
- 106J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37.
- 107H. Ooka, J. Huang, K. S. Exner, Front. Energy Res. 2021, 9, 10.3389/fenrg.2021.654460.
- 108G. E. Briggs, J. B. S. Haldane, Biochem. J. 1925, 19, 338.
- 109B. Srinivasan, FEBS J. 2022, 289, 6086.
- 110E. Seibert, T. S. Tracy, in Enzyme Kinetics in Drug Metabolism. Methods in Molecular Biology, Vol. 2342 (Eds.: S. Nagar, U. A. Argikar, D. Tweedie), Humana, New York, 2021, pp. 3–27.
- 111B. Srinivasan, ChemMedChem 2021, 16, 899.
- 112F. M. Menger, Pure Appl. Chem. 2005, 77, 1873.
- 113J. Åqvist, M. Kazemi, G. V. Isaksen, B. O. Brandsdal, Acc. Chem. Res. 2017, 50, 199.
- 114F. M. Menger, L. E. Glass, J. Am. Chem. Soc. 1980, 102, 5404.
- 115N. Turaeva, Comput. Theor. Chem. 2020, 1180, 112827.
- 116I. B. Grillo, G. A. Urquiza-Carvalho, J. F. R. Bachega, G. B. Rocha, J. Chem. Inf. Model. 2020, 60, 578.
- 117J. Fuller, T. R. Wilson, M. E. Eberhart, A. N. Alexandrova, J. Chem. Inf. Model. 2019, 59, 2367.
- 118N. Pence, N. Lewis, A. B. Alleman, L. C. Seefeldt, J. W. Peters, J. Inorg. Biochem. 2021, 214, 111273.
- 119D. F. Harris, D. A. Lukoyanov, H. Kallas, C. Trncik, Z. Y. Yang, P. Compton, N. Kelleher, O. Einsle, D. R. Dean, B. M. Hoffman, L. C. Seefeldt, Biochemistry 2019, 58, 3293.
- 120H. Sanabria, D. Rodnin, K. Hemmen, T. O. Peulen, S. Felekyan, M. R. Fleissner, M. Dimura, F. Koberling, R. Kühnemuth, W. Hubbell, H. Gohlke, C. A. M. Seidel, Nat. Commun. 2020, 11, 1231.
- 121I. M. Dimucci, J. T. Lukens, S. Chatterjee, K. M. Carsch, C. J. Titus, S. J. Lee, D. Nordlund, T. A. Betley, S. N. Macmillan, K. M. Lancaster, J. Am. Chem. Soc. 2019, 141, 18508.
- 122B. L. Geoghegan, Y. Liu, S. Peredkov, S. Dechert, F. Meyer, S. Debeer, G. E. C. Iii, J. Am. Chem. Soc. 2022, 144, 2520–2534.
- 123D. A. Kraut, K. S. Carroll, D. Herschlag, Annu. Rev. Biochem. 2003, 72, 517.
- 124D. K. Park, M. S. Lee, R. Soc. Open Sci. 2019, 6, 190407.
- 125C. Jin, S. Zhang, Z. Zhang, Y. Chen, Inorg. Chem. 2018, 57, 2169.
- 126A. M. Wright, Z. Wu, G. Zhang, J. L. Mancuso, R. J. Comito, R. W. Day, C. H. Hendon, J. T. Miller, M. Dincă, Chem 2018, 4, 2894.
- 127C. Wang, Z. Lai, G. Huang, H. J. Pan, Chem. A Eur. J. 2022, 28, e202201499.
- 128J. Amaro-Gahete, M. V. Pavliuk, H. Tian, D. Esquivel, F. J. Romero-Salguero, S. Ott, Coord. Chem. Rev. 2021, 448, 214172.
- 129H. Tang, M. B. Hall, J. Am. Chem. Soc. 2017, 139, 18065.
- 130H. J. Pan, X. Hu, Angew. Chem. Int. Ed. 2020, 59, 4942.
- 131M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, Science 2011, 333, 863.
- 132M. A. Gross, A. Reynal, J. R. Durrant, E. Reisner, J. Am. Chem. Soc. 2014, 136, 356.
- 133C. G. Margarit, N. G. Asimow, M. I. Gonzalez, D. G. Nocera, J. Phys. Chem. Lett. 2020, 11, 1890.
- 134M. Á. Vázquez-Fernández, M. I. Fernández-García, G. González-Riopedre, M. Maneiro, M. J. Rodríguez-Doutón, J. Coord. Chem. 2011, 64, 3843.
- 135Y. G. Abashkin, S. K. Burt, J. Phys. Chem. B 2004, 108, 2708.
- 136M. B. M. S. Martins, G. A. Corrêa, T. Moniz, C. J. Medforth, B. de Castro, S. L. H. Rebelo, J. Catal. 2023, 419, 125.
- 137K. J. Fisher, K. L. Materna, B. Q. Mercado, R. H. Crabtree, G. W. Brudvig, ACS Catal. 2017, 7, 3384.
- 138Y. Guo, Z. Yao, B. J. J. Timmer, X. Sheng, L. Fan, Y. Li, F. Zhang, L. Sun, Nano Energy 2019, 62, 282.
- 139N. R. Singstock, C. B. Musgrave, J. Am. Chem. Soc. 2022, 144, 12800.