Upcycling of Polypropylene Wastes via Catalytically C−H Modification with Polar Olefins
Shuangjing Zhou
School of Chemistry, Xi'an Jiaotong University, Xi'an, Xi'an, 710049 P. R. China
These authors contribute equally.
Search for more papers by this authorZongnan Zhang
School of Chemistry, Xi'an Jiaotong University, Xi'an, Xi'an, 710049 P. R. China
These authors contribute equally.
Search for more papers by this authorCorresponding Author
Prof. Rong Zeng
School of Chemistry, Xi'an Jiaotong University, Xi'an, Xi'an, 710049 P. R. China
Search for more papers by this authorShuangjing Zhou
School of Chemistry, Xi'an Jiaotong University, Xi'an, Xi'an, 710049 P. R. China
These authors contribute equally.
Search for more papers by this authorZongnan Zhang
School of Chemistry, Xi'an Jiaotong University, Xi'an, Xi'an, 710049 P. R. China
These authors contribute equally.
Search for more papers by this authorCorresponding Author
Prof. Rong Zeng
School of Chemistry, Xi'an Jiaotong University, Xi'an, Xi'an, 710049 P. R. China
Search for more papers by this authorGraphical Abstract
Experiment to Application: We have developed an efficient strategy to introduce the polar groups into polypropylene materials via visible light-induced Fe-catalyzed C−H functionalization. Various polar polypropylene could be obtained in good level of functionalization to modify the mechanical properties. The practical applications in upcycling of plastic wastes, hydrophilicity enhancement, and the miscibility with other polymers were also studied.
Abstract
While polypropylene (PP) is one of the most widely used polyolefin materials, its post-functionalization has been a continuously researched topic in the polymer field since it could significantly improve physical and chemical properties by introducing polar groups, beneficial for development of the next generation of polyolefin materials. In this work, we describe the development of a visible-light promoted, environmentally friendly iron-catalyzed strategy and establishing of the reaction scope for C−H alkylated modification of polypropylene. Under our conditions, various polypropylenes could be functionalized with diverse polar alkenes with good levels of functionalization (LOF). The properties of the resulting polymers were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and tensile testing. Polypropylene wastes could also be upcycled. While the incorporation of the polyglycol groups enhanced hydrophilicity, the installation of the ester groups increased the miscibility with other polymers by acting as a compatibilizer for polystyrene and polyethylene.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc202300929-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. R. Sita, Angew. Chem. Int. Ed. 2009, 48, 2464;
- 1bY. Konishi, W.-J. Tao, H. Yasuda, S. Ito, Y. Oishi, H. Ohtaki, A. Tanna, T. Tayano, K. Nozaki, ACS Macro Lett. 2018, 7, 213;
- 1cH.-J. Fan, Y.-D. Liao, S.-Y. Dai, Polymer 2022, 254, 125076;
- 1dL. Jasinska-Walc, M. Bouyahyi, R. Duchateau, Acc. Chem. Res. 2022, 55, 1985;
- 1eD. S. Morais, B. Avila, C. Lopes, M. A. Rodrigues, F. Vaz, A. V. Machado, M. H. Fernandes, R. M. Guedes, M. A. Lopes, Polym. Test. 2020, 86, 106507.
- 2
- 2aX.-Y. Wang, Y.-X. Wang, X.-C. Shi, J.-Y. Liu, C.-L. Chen, Y.-S. Li, Macromolecules 2014, 47, 552;
- 2bC. Zou, C. Tan, W.-M. Pang, C.-L. Chen, ChemCatChem 2019, 11, 5339.
- 3Y. Ota, S. Ito, M. Kobayashi, S. Kitade, K. Sakata, T. Tayano, K. Nozaki, Angew. Chem. Int. Ed. 2016, 55, 7505.
- 4
- 4aC. Tan, C.-L. Chen, Angew. Chem. Int. Ed. 2019, 58, 7192;
- 4bS.-Y. Dai, S.-K. Li, G.-Y. Xu, C.-L. Chen, Macromolecules 2020, 53, 2539;
- 4cD. J. Gilmour, T. Tomkovic, N. Kuanr, M. R. Perry, H. Gildenast, S. G. Hatzikiriakos, L. L. Schafer, ACS Appl. Polym. Mater. 2021, 3, 2330;
- 4dN. M. G. Franssen, J. N. H. Reeka, B. D. Bruin, Chem. Soc. Rev. 2013, 42, 5809;
- 4eD. J. Walsh, E. Su, D. Guironnet, Chem. Sci. 2018, 9, 4703;
- 4fC. Zou, H. Zhang, C. Tan, Z.-G. Cai, Macromolecules 2021, 54, 64;
- 4gY.-N. Na, X.-B. Wang, K.-B. Lian, Y. Zhu, W.-M. Li, Y. Luo, C.-L. Chen, ChemCatChem 2017, 9, 1062;
- 4hW. U. Khan, H. Mazhar, F. Shehzad, M. A. Al-Harthi, Chem. Rec. 2023, 23, e202200243;
- 4iA. L. Kocen, S.-L. Cui, T.-W. Lin, A. M. LaPointe, G. W. Coates, J. Am. Chem. Soc. 2022, 144, 12613;
- 4jT. C. M. Chung, Macromolecules 2013, 46, 6671–6698;
- 4kB. P. Carrow, K. Nozaki, Macromolecules 2014, 47, 2541;
- 4lR. Nakano, K. Nozaki, J. Am. Chem. Soc. 2015, 137, 10934;
- 4mS. L. J. Luckham, K. Nozaki, Acc. Chem. Res. 2021, 54, 344;
- 4nM.-L. Huang, J.-Z. Chen, B.-H. Wang, W. Huang, H.-B. Chen, Y.-S. Gao, T. J. Marks, Angew. Chem. Int. Ed. 2020, 59, 20522;
- 4oT. Liang, S. B. Goudari, C.-L. Chen, Nat. Commun. 2020, 11, 372;
- 4pC.-L. Chen, Nat. Chem. Rev. 2018, 2, 6;
- 4qZ. Chen, M. Brookhart, Acc. Chem. Res. 2018, 51, 1831;
- 4rA. Nakamura, S. Ito, K. Nozaki, Chem. Rev. 2009, 109, 5215.
- 5
- 5aA. Bunescu, S. Lee, Q. Li, J. F. Hartwig, ACS Cent. Sci. 2017, 3, 895;
- 5bJ. B. Williamson, S. E. Lewis, R. R. Johnson, I. M. Manning, F. A. Leibfarth, Angew. Chem. Int. Ed. 2019, 58, 8654;
- 5cJ. H. Jo, S. C. Hong, Polym. Chem. 2017, 8, 3307;
- 5dC.-S. Bae, J. F. Hartwig, N. K. B. Harris, R. O. Long, K. S. Anderson, M. A. Hillmyer, J. Am. Chem. Soc. 2005, 127, 767;
- 5eM. B. Larsen, S.-J. Wang, M. A. Hillmyer, J. Am. Chem. Soc. 2018, 140, 11911;
- 5fM. M. Díaz-Requejo, P. Wehrmann, M. D. Leatherman, S. Trofimenko, S. Mecking, M. Brookhart, P. J. Pérez, Macromolecules 2005, 38, 4966;
- 5gM. F. Diop, J. M. Torkelson, Macromolecules 2013, 46, 7834;
- 5hN. K. Boaen, M. A. Hillmyer, Chem. Soc. Rev. 2005, 34, 267;
- 5iC. M. Plummer, L. Li, Y.-M. Chen, Polym. Chem. 2020, 11, 6862;
- 5jL.-Y. Chen, K. G. Malollari, A. Uliana, D. Sanchez, P. B. Messersmith, J. F. Hartwig, Chem 2021, 7, 137;
- 5kT. J. Fazekas, J. W. Alty, E. K. Neidhart, A. S. Miller, F. A. Leibfarth, E. J. Alexania, Science 2022, 375, 545;
- 5lE. E. Stache, V. Kottisch, B. P. Fors, J. Am. Chem. Soc. 2020, 142, 4581.
- 6
- 6aT. AbouElmaaty, S. A. Abdeldayem, S. M. Ramadan, K. Sayed-Ahmed, M. R. Plutino, Polymer 2021, 13, 2483;
- 6bG.-L. Tao, A.-J. Gong, J.-J. Lu, H.-J. Sue, D. E. Bergbreiter, Macromolecules 2001, 34, 7672;
- 6cJ. M. Goddard, J. H. Hotchkiss, Prog. Polym. Sci. 2007, 32, 698.
- 7
- 7aA. Tariq, N. M. Ahmad, M. A. Abbas, M. F. Shakir, Z. Khaliq, S. Rafiq, Z. Ali, A. Elaissari, Polymer 2021, 13, 495;
- 7bF. Berzin, J. J. Flat B. Vergnes, J. Polym. Eng. 2013, 33, 673;
- 7cS. H. P. Bettini, J. A. M. Agnelli, J. Appl. Polym. Sci. 2002, 85, 2706;
- 7dA. Galia, R. D. Gregorio, G. Spadaro, G. Filardo, Macromolecules 2004, 37, 4580;
- 7eD. Shi, J.-H. Yang, Z.-H. Yao, Y. Wang, H.-L. Huang, W. Jing, J.-H. Yin, G. Costa, Polymer 2001, 42, 5549;
- 7fM. Zhang, R. H. Colby, S. T. Milner, T. C. M. Chung, Macromolecules 2013, 46, 4313;
- 7gE. Passagliaa, S. Coiai, S. Augier, Prog. Polym. Sci. 2009, 34, 911.
- 8
- 8aA. P. Kharitonov, R. Taege, G. Ferrier, V. V. Teplyakov, D. A. Syrtsova, G.-H. Koops, J. Fluorine Chem. 2005, 126, 251;
- 8bJ.-J. Zhang, D.-K Yuan, X.-Q. Xia, H.-C. Yu, S.-M. Zhang, C.-M. Li, Q. Miao, F. Zhu, Q.-G. Huang, J.-J. Yi, Z. Zhao, Mater. Today Commun. 2021, 26, 102058;
- 8cJ. Friedrich, S. Wettmarshausen, M. Hennecke, Surf. Coat. Technol. 2009, 203, 3647;
- 8dQ. Li, C. Tzoganakis, Int. Polym. Process. 2007, 3, 311;
- 8eM. Saule, S. Navarre, O. Babot, W. Maslow, L. Vertommen, B. Maillard, Macromolecules 2003, 36, 7469;
- 8fS. Coiai, S. Augier, C. Pinzino, E. Passaglia, Polym. Degrad. Stab. 2010, 95, 298;
- 8gG.-L. Tao, A.-J. Gong, J.-J. Lu, H.-J. Sue, D. E. Bergbreiter, Macromolecules 2001, 34, 7672.
- 9C. M. Plummer, H.-B. Zhou, W. Zhu, H.-H. Huang, L.-X. Liu, Y.-M. Chen, Polym. Chem. 2018, 9, 1309.
- 10J. B. Williamson, C. G. Na, R. R. Johnson, W. F. M. Daniel, E. J. Alexanian, F. A. Leibfarth, J. Am. Chem. Soc. 2019, 141, 12815.
- 11H.-B. Zhou, S.-S. Wang, H.-H. Huang, Z.-Y. Li, C. M. Plummer, S.-L. Wang, W.-H. Sun, Y.-M. Chen, Macromolecules 2017, 50, 3510.
- 12C. M. Plummer, H.-B. Zhou, S.-H. Li, H. Zhong, Z.-Y. Sun, C. Bariashir, W.-H. Sun, H.-H. Huang, L.-X. Liua, Y.-M. Chen, Polym. Chem. 2019, 10, 3325.
- 13
- 13aZ. Zhang, Y. Zhang, R. Zeng, Chem. Sci. 2023, 14, 9374. DOI: 10.1039/d3sc03252c. The relative photoinduced iron catalyzed C−H functionalization, see:
- 13bZ. Zhang, X. Li, D. Zhou, S. Ding, M. Wang, R. Zeng, J. Am. Chem. Soc. 2023, 145, 7612;
- 13cX. Zhang, R. Zeng, Org. Chem. Front. 2022, 9, 4955;
- 13dN. Xiong, Yang, Li, R. Zeng, Org. Lett. 2021, 23, 8968;
- 13eY. Jin, Q. Zhang, L. Wang, X. Wang, C. Meng, C. Duan, Green Chem. 2021, 23, 6984;
- 13fS. Li, B. Zhu, R. Lee, B. Qiao, Z. Jiang, Org. Chem. Front. 2018, 5, 380;
- 13gC. Zhang, Z. Huang, J. Lu, N. Luo, F. Wang, J. Am. Chem. Soc. 2018, 140, 2032;
- 13hZ. Li, X. Wang, S. Xia, J. Jin, Org. Lett. 2019, 21, 4259;
- 13iY. C. Kang, S. M. Treacy, T. Rovis, ACS Catal. 2021, 11, 7442;
- 13jJ.-L. Tu, A.-M. Hu, L. Guo, W. Xia, J. Am. Chem. Soc. 2023, 145, 7600;
- 13kG. Zhang, Z. Zhang, R. Zeng, Chin. J. Chem. 2021, 39, 3225;
- 13lN. Xiong, Y. Dong, B. Xu, Y. Li, R. Rong, Org. Lett. 2022, 24, 4766.
- 14
- 14aG. Moad, Prog. Polym. Sci. 1999, 24, 81;
- 14bN. K. Boaen, M. A. Hillmyer, Macromolecules 2003, 36, 7027.
- 15P. Strasser, I. Teasdale, Molecules 2020, 25, 1716.
- 16
- 16aJ. M. Garcia, M. L. Robertson, Science 2017, 358, 870;
- 16bA. J. Martín, C. Mondelli, S. D. Jaydev, J. Pérez-Ramírez, Chem 2021, 7, 1487;
- 16cW. Zhang, S.-M. Kim, L. Wahl, R. Khare, L. Hale, J.-Z. Hu, D. M. Camaioni, O. Y. Gutiérrez, Y. Liu, J. A. Lercher, Science 2023, 379, 807;
- 16dK. Faust, P. Denifl, M. Hapke, ChemCatChem 2023, 15, e202300310.
- 17
- 17aC. Caicedoa, E. A. Murillo, Eur. Polym. J. 2019, 118, 254;
- 17bM. Korčušková, J. Petruš, P. Lepcio, F. Kučera, J. Jančář, Polymer 2022, 238, 124398;
- 17cL.-X. Cao, Z.-G. Cai, M.-Y. Li, Macromolecules 2022, 55, 3513.
- 18A. Pia, P. Kröger, R. J. E. A. Boonen, J. M. J. Paulusse, Polymer 2017, 120, 119.
- 19J. He, Z.-Q. Bai, P.-F. Yuan, L.-Z. Wu, Q. Liu, ACS Catal. 2021, 11, 446.
Citing Literature
January 8, 2024
e202300929