Cu, Fe, N-doped Carbon Nanotubes Prepared through Silica Coating for Selective Oxygen Reduction to Water in Acidic Media
Corresponding Author
Dr. Masaru Kato
Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorDaiki Abe
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorSiqi Xie
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorShun Sato
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorNatsuki Fujibayashi
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorDr. Koki Matsumoto
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
Search for more papers by this authorProf. Akira Onoda
Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorProf. Takashi Hayashi
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
Search for more papers by this authorDr. Takaya Mitsui
Foundational Quantum Technology Research Directorate, National Institute for Quantum Science and Technology, Sayo, Hyogo, 679-5148 Japan
Search for more papers by this authorDr. Kosuke Fujiwara
Foundational Quantum Technology Research Directorate, National Institute for Quantum Science and Technology, Sayo, Hyogo, 679-5148 Japan
Search for more papers by this authorDr. Takashi Yamamoto
Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522 Japan
Search for more papers by this authorProf. Yasuaki Einaga
Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522 Japan
Search for more papers by this authorDr. Colin A. Tadgell
Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorYuta Kato
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorProf. Kiyotaka Asakura
Institute for Catalysis, Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021 Japan
Ritsumeikan SR Center, Ritsumeikan University, Kusatsu, 525-8577 Japan
Search for more papers by this authorCorresponding Author
Prof. Ichizo Yagi
Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorCorresponding Author
Dr. Masaru Kato
Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorDaiki Abe
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorSiqi Xie
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorShun Sato
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorNatsuki Fujibayashi
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorDr. Koki Matsumoto
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
Search for more papers by this authorProf. Akira Onoda
Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorProf. Takashi Hayashi
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Japan
Search for more papers by this authorDr. Takaya Mitsui
Foundational Quantum Technology Research Directorate, National Institute for Quantum Science and Technology, Sayo, Hyogo, 679-5148 Japan
Search for more papers by this authorDr. Kosuke Fujiwara
Foundational Quantum Technology Research Directorate, National Institute for Quantum Science and Technology, Sayo, Hyogo, 679-5148 Japan
Search for more papers by this authorDr. Takashi Yamamoto
Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522 Japan
Search for more papers by this authorProf. Yasuaki Einaga
Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522 Japan
Search for more papers by this authorDr. Colin A. Tadgell
Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorYuta Kato
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorProf. Kiyotaka Asakura
Institute for Catalysis, Hokkaido University, N21 W10, Kita-ku, Sapporo, 001-0021 Japan
Ritsumeikan SR Center, Ritsumeikan University, Kusatsu, 525-8577 Japan
Search for more papers by this authorCorresponding Author
Prof. Ichizo Yagi
Faculty of Environmental Earth Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Graduate School of Environmental Science, Hokkaido University, N10 W5, Kita-ku, Sapporo, 060-0810 Japan
Search for more papers by this authorGraphical Abstract
Cu, Fe, N-doped carbon nanotubes, (Cu,Fe)−N−CNT, was prepared using a silica coating method as electrocatalysts for the oxygen reduction reaction (ORR) in acidic media. (Cu,Fe)−N−CNT shows H2O2 yields of <1 % for the ORR. Physicochemical measurements reveal that bimetallic doping gives an impact on kinetic parameters rather than thermodynamic ones.
Abstract
We report Cu, Fe, N-doped carbon nanotubes, (Cu,Fe)−N−CNT, as electrocatalysts for the oxygen reduction reaction (ORR) in acidic media. (Cu,Fe)−N−CNT was prepared using a silica coating method in pyrolysis to minimize the formation of carbon-coated metal oxide or carbide nanoparticles, which are known to be inactive for the H2O2 reduction. (Cu,Fe)−N−CNT shows a turnover frequency of 0.66 e− site−1 s−1 at +0.8 V vs. RHE and H2O2 yields of <1 % for the ORR with a utilization factor of active sites of 82 %. Kinetic analysis reveals that 4e− transfer rates for (Cu,Fe)−N−CNT are higher than those of a monometallic counterpart of Fe−N−CNT. In situ X-ray absorption spectroscopy enables us to determine redox potentials: E°’(FeIII/FeII)=0.65 V vs. RHE and E°’(CuII/CuI)=0.45 V for (Cu,Fe)−N−CNT, and E°’(FeIII/FeII)=0.65 V for Fe−N−CNT. These results indicate that bimetallic doping into carbon nanotubes gives the effect on kinetic parameters but not on thermodynamic ones. In other words, there is no direct electronic interactions between the Cu and Fe active sites for (Cu,Fe)-N-CNT because such interactions should modulate their redox potentials.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cctc202400017-sup-0001-misc_information.pdf5.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Banham, S. Ye, ACS Energy Lett. 2017, 2, 629–638;
- 1bK. Kodama, T. Nagai, A. Kuwaki, R. Jinnouchi, Y. Morimoto, Nat. Nanotechnol. 2021, 16, 140–147;
- 1cZ. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu, H. Liu, Y. Li, Y. Huang, Adv. Mater. 2019, 31, 1808115.
- 2
- 2aC. Cui, L. Gan, M. Heggen, S. Rudi, P. Strasser, Nat. Mater. 2013, 12, 765–771;
- 2bX. Q. Huang, Z. P. Zhao, L. Cao, Y. Chen, E. B. Zhu, Z. Y. Lin, M. F. Li, A. M. Yan, A. Zettl, Y. M. Wang, X. F. Duan, T. Mueller, Y. Huang, Science 2015, 348, 1230–1234.
- 3
- 3aC. Chen, Y. J. Kang, Z. Y. Huo, Z. W. Zhu, W. Y. Huang, H. L. L. Xin, J. D. Snyder, D. G. Li, J. A. Herron, M. Mavrikakis, M. F. Chi, K. L. More, Y. D. Li, N. M. Markovic, G. A. Somorjai, P. D. Yang, V. R. Stamenkovic, Science 2014, 343, 1339–1343;
- 3bM. Kato, R. Nakahoshiba, K. Ogura, S. Tokuda, S. Yasuda, K. Higashi, T. Uruga, Y. Uemura, I. Yagi, ACS Appl. Energ. Mater. 2020, 3, 6768–6774;
- 3cM. Kato, K. Ogura, S. Nakagawa, S. Tokuda, K. Takahashi, T. Nakamura, I. Yagi, ACS Omega 2018, 3, 9052–9059.
- 4
- 4aYu Zhuang, Y. Iguchi, T. Li, M. Kato, Y. A. Hutapea, A. Hayashi, T. Watanabe, I. Yagi, ACS Catal. 2024, 14, 1750–1758;
- 4bM. Kato, Y. Iguchi, T. Li, Y. Kato, Y. Zhuang, K. Higashi, T. Uruga, T. Saida, K. Miyabayashi, I. Yagi, ACS Catal. 2022, 12, 259–264;
- 4cM. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard, Y. Huang, X. Duan, Science 2016, 354, 1414–1419.
- 5
- 5aJ. P. Collman, N. K. Devaraj, R. A. Decréau, Y. Yang, Y.-L. Yan, W. Ebina, T. A. Eberspacher, C. E. D. Chidsey, Science 2007, 315, 1565–1568;
- 5bG. T. Babcock, M. Wikström, Nature 1992, 356, 301–309.
- 6
- 6aA. S. Haas, D. L. Pilloud, K. S. Reddy, G. T. Babcock, C. C. Moser, J. K. Blasie, P. L. Dutton, J. Phys. Chem. B 2001, 105, 11351–11362;
- 6bK. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-Pohlmeier, B. Richter, J. Heberle, J. Am. Chem. Soc. 2004, 126, 16199–16206;
- 6cX. Wang, R. Clément, M. Roger, M. Bauzan, I. Mazurenko, A. D. Poulpiquet, M. Ilbert, E. Lojou, J. Am. Chem. Soc. 2019, 141, 11093–11102;
- 6dM. Kato, R. Sano, N. Yoshida, M. Iwafuji, Y. Nishiyama, S. Oka, K. Shinzawa-Itoh, Y. Nishida, Y. Shintani, I. Yagi, J. Phys. Chem. Lett. 2022, 13, 9165–9170.
- 7
- 7aG. Bae, S. Han, H.-S. Oh, C. H. Choi, Angew. Chem. Int. Ed. 2023, 62, e202219227;
- 7bA. Pedersen, J. Barrio, A. Li, R. Jervis, D. J. L. Brett, M. M. Titirici, I. E. L. Stephens, Adv. Energy Mater. 2022, 12, 2102715.
- 8
- 8aM. Kato, N. Fujibayashi, D. Abe, N. Matsubara, S. Yasuda, I. Yagi, ACS Catal. 2021, 11, 2356–2365;
- 8bS. Yasuda, Y. Uchibori, M. Wakeshima, Y. Hinatsu, H. Ogawa, M. Yano, H. Asaoka, RSC Adv. 2018, 8, 37600–37605;
- 8cK. Matsumoto, M. Kato, I. Yagi, S. Xie, K. Asakura, S.-I. Noro, N. Tohnai, S. Campidelli, T. Hayashi, A. Onoda, Chem. Eur. J. 2022, 28, e202103545;
- 8dH. Zhang, H. T. Chung, D. A. Cullen, S. Wagner, U. I. Kramm, K. L. More, P. Zelenay, G. Wu, Energy Environ. Sci. 2019, 12, 2548–2558;
- 8eJ. Woo, J. S. Lim, T. Lim, D. S. Baek, J. H. Kim, J. H. Lee, H. Y. Jeong, C. H. Choi, S. H. Joo, EES Catal. 2023, 1, 62–73.
- 9H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science 2017, 357, 479–484.
- 10
- 10aJ. Li, M. T. Sougrati, A. Zitolo, J. M. Ablett, I. C. Oğuz, T. Mineva, I. Matanovic, P. Atanassov, Y. Huang, I. Zenyuk, A. Di Cicco, K. Kumar, L. Dubau, F. Maillard, G. Dražić, F. Jaouen, Nat. Catal. 2021, 4, 10–19;
- 10bL. Ni, C. Gallenkamp, S. Wagner, E. Bill, V. Krewald, U. I. Kramm, J. Am. Chem. Soc. 2022, 144, 16827–16840.
- 11
- 11aJ. Li, L. Jiao, E. Wegener, L. L. Richard, E. Liu, A. Zitolo, M. T. Sougrati, S. Mukerjee, Z. Zhao, Y. Huang, F. Yang, S. Zhong, H. Xu, A. J. Kropf, F. Jaouen, D. J. Myers, Q. Jia, J. Am. Chem. Soc. 2020, 142, 1417–1423;
- 11bA. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 2015, 14, 937.
- 12
- 12aM. Moriya, R. Takahama, K. Kamoi, J. Ohyama, S. Kawashima, R. Kojima, M. Okada, T. Hayakawa, Y. Nabae, J. Phys. Chem. C 2020, 124, 20730–20735;
- 12bT. Marshall-Roth, N. J. Libretto, A. T. Wrobel, K. J. Anderton, M. L. Pegis, N. D. Ricke, T. V. Voorhis, J. T. Miller, Y. Surendranath, Nat. Commun. 2020, 11, 5283.
- 13
- 13aA. Muthukrishnan, Y. Nabae, J. Phys. Chem. C 2016, 120, 22515–22525;
- 13bY. Wu, Y. Nabae, Curr. Opin. Electrochem. 2021, 25, 100633.
- 14
- 14aY. Sun, L. Silvioli, N. R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, T. Moeller, D. Bernsmeier, J. Rossmeisl, F. Jaouen, P. Strasser, J. Am. Chem. Soc. 2019, 141, 12372–12381;
- 14bJ. Shen, Y. Wen, H. Jiang, S. Yu, C. Dong, Y. Fan, B. Liu, C. Li, J. Phys. Chem. C 2022, 126, 10388–10398.
- 15
- 15aY. Zhou, W. Yang, W. Utetiwabo, Y.-M. Lian, X. Yin, L. Zhou, P. Yu, R. Chen, S. Sun, J. Phys. Chem. Lett. 2020, 11, 1404–1410;
- 15bT. He, Y. Chen, Q. Liu, B. Lu, X. Song, H. Liu, M. Liu, Y.-N. Liu, Y. Zhang, X. Ouyang, S. Chen, Angew. Chem. Int. Ed. 2022, 61, e202201007;
- 15cN. R. Sahraie, U. I. Kramm, J. Steinberg, Y. Zhang, A. Thomas, T. Reier, J.-P. Paraknowitsch, P. Strasser, Nat. Commun. 2015, 6, 8618;
- 15dF. Luo, S. Wagner, I. Onishi, S. Selve, S. Li, W. Ju, H. Wang, J. Steinberg, A. Thomas, U. I. Kramm, P. Strasser, Chem. Sci. 2021, 12, 384–396;
- 15eM. Kato, T. Murotani, I. Yagi, Chem. Lett. 2016, 45, 1213–1215;
- 15fC. Du, Y. Gao, H. Chen, P. Li, S. Zhu, J. Wang, Q. He, W. Chen, J. Mater. Chem. A 2020, 8, 16994–17001;
- 15gZ. Miao, S. Li, C. Priest, T. Wang, G. Wu, Q. Li, Adv. Mater. 2022, 34, 2200595;
- 15hX. Yang, C. Priest, Y. Hou, G. Wu, SusMat 2022, 2, 569–590;
- 15iA. Onoda, Y. Tanaka, K. Matsumoto, M. Ito, T. Sakata, H. Yasuda, T. Hayashi, RSC Adv. 2018, 8, 2892–2899;
- 15jY. Wang, P. Meng, Z. Yang, M. Jiang, J. Yang, H. Li, J. Zhang, B. Sun, C. Fu, Angew. Chem. Int. Ed. 2023, 62, e202304229.
- 16C. H. Choi, W. S. Choi, O. Kasian, A. K. Mechler, M. T. Sougrati, S. Brüller, K. Strickland, Q. Jia, S. Mukerjee, K. J. J. Mayrhofer, F. Jaouen, Angew. Chem. Int. Ed. 2017, 56, 8809–8812.
- 17
- 17aC. H. Choi, C. Baldizzone, J.-P. Grote, A. K. Schuppert, F. Jaouen, K. J. J. Mayrhofer, Angew. Chem. Int. Ed. 2015, 54, 12753–12757;
- 17bC. H. Choi, C. Baldizzone, G. Polymeros, E. Pizzutilo, O. Kasian, A. K. Schuppert, N. Ranjbar Sahraie, M.-T. Sougrati, K. J. J. Mayrhofer, F. Jaouen, ACS Catal. 2016, 6, 3136–3146.
- 18P. Zhang, Y. Wang, Y. You, J. Yuan, Z. Zhou, S. Sun, J. Phys. Chem. Lett. 2021, 12, 7797–7803.
- 19C. Walling, Acc. Chem. Res. 1975, 8, 125–131.
- 20Y. J. Sa, D.-J. Seo, J. Woo, J. T. Lim, J. Y. Cheon, S. Y. Yang, J. M. Lee, D. Kang, T. J. Shin, H. S. Shin, H. Y. Jeong, C. S. Kim, M. G. Kim, T.-Y. Kim, S. H. Joo, J. Am. Chem. Soc. 2016, 138, 15046–15056.
- 21J. S. Bates, F. Khamespanah, D. A. Cullen, A. A. Al-Omari, M. N. Hopkins, J. J. Martinez, T. W. Root, S. S. Stahl, J. Am. Chem. Soc. 2022, 144, 18797–18802.
- 22
- 22aM. Kato, M. Muto, N. Matsubara, Y. Uemura, Y. Wakisaka, T. Yoneuchi, D. Matsumura, T. Ishihara, T. Tokushima, S.-I. Noro, S. Takakusagi, K. Asakura, I. Yagi, ACS Appl. Energ. Mater. 2018, 1, 2358–2364;
- 22bS. Yasuda, A. Furuya, Y. Uchibori, J. Kim, K. Murakoshi, Adv. Funct. Mater. 2016, 26, 738–744.
- 23A. D. Adler, F. R. Longo, F. Kampas, J. Kim, J. Inorg. Nucl. Chem. 1970, 32, 2443–2445.
- 24M. Seto, R. Masuda, S. Higashitaniguchi, S. Kitao, Y. Kobayashi, C. Inaba, T. Mitsui, Y. Yoda, Phys. Rev. Lett. 2009, 102, 217602.
- 25T. N. Huan, N. Ranjbar, G. Rousse, M. Sougrati, A. Zitolo, V. Mougel, F. Jaouen, M. Fontecave, ACS Catal. 2017, 7, 1520–1525.
- 26N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, J. Am. Chem. Soc. 2013, 135, 15443–15449.
- 27M. Primbs, Y. Sun, A. Roy, D. Malko, A. Mehmood, M.-T. Sougrati, P.-Y. Blanchard, G. Granozzi, T. Kosmala, G. Daniel, P. Atanassov, J. Sharman, C. Durante, A. Kucernak, D. Jones, F. Jaouen, P. Strasser, Energy Environ. Sci. 2020, 13, 2480–2500.
- 28N. D. Leonard, S. Wagner, F. Luo, J. Steinberg, W. Ju, N. Weidler, H. Wang, U. I. Kramm, P. Strasser, ACS Catal. 2018, 8, 1640–1647.
- 29J. Barrio, A. Pedersen, S. C. Sarma, A. Bagger, M. Gong, S. Favero, C.-X. Zhao, R. Garcia-Serres, A. Y. Li, Q. Zhang, F. Jaouen, F. Maillard, A. Kucernak, I. E. L. Stephens, M.-M. Titirici, Adv. Mater. 2023, 35, 2211022.
- 30
- 30aH. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B 2005, 56, 9–35;
- 30bG. Zhang, X. Yang, M. Dubois, M. Herraiz, R. Chenitz, M. Lefèvre, M. Cherif, F. Vidal, V. P. Glibin, S. Sun, J.-P. Dodelet, Energy Environ. Sci. 2019, 12, 3015–3037.
- 31M. Kato, I. Yagi, e-J. Surf. Sci. Nanotechnol. 2020, 18, 81–93.
- 32C. H. Choi, H.-K. Lim, M. W. Chung, G. Chon, N. Ranjbar Sahraie, A. Altin, M.-T. Sougrati, L. Stievano, H. S. Oh, E. S. Park, F. Luo, P. Strasser, G. Dražić, K. J. J. Mayrhofer, H. Kim, F. Jaouen, Energy Environ. Sci. 2018, 11, 3176–3182.
- 33M. Kato, K. Kimijima, M. Shibata, H. Notsu, K. Ogino, K. Inokuma, N. Ohta, H. Uehara, Y. Uemura, N. Oyaizu, T. Ohba, S. Takakusagi, K. Asakura, I. Yagi, Phys. Chem. Chem. Phys. 2015, 17, 8638–8641.
- 34G. R. Shulman, Y. Yafet, P. Eisenberger, W. E. Blumberg, Proc. Nat. Acad. Sci. 1976, 73, 1384–1388.
- 35K. Ebner, J. Herranz, V. A. Saveleva, B.-J. Kim, S. Henning, M. Demicheli, F. Krumeich, M. Nachtegaal, T. J. Schmidt, ACS Appl. Energ. Mater. 2019, 2, 1469–1479.
- 36Q. He, X. Yang, X. Ren, B. E. Koel, N. Ramaswamy, S. Mukerjee, R. Kostecki, J. Power Sources 2011, 196, 7404–7410.
- 37T. Yamada, G. Maruta, S. Takeda, Chem. Commun. 2011, 47, 653–655.
- 38S. Takenaka, D. Mikami, E. Tanabe, H. Matsune, M. Kishida, Appl. Catal. A 2015, 492, 60–67.
- 39
- 39aT. Mitsui, N. Hirao, Y. Ohishi, R. Masuda, Y. Nakamura, H. Enoki, K. Sakaki, M. Seto, J. Synchrotron Radiat. 2009, 16, 723–729;
- 39bT. Mitsui, M. Seto, S. Kikuta, N. Hirao, Y. Ohishi, H. Takei, Y. Kobayashi, S. Kitao, S. Higashitaniguchi, R. Masuda, Jpn. J. Appl. Phys. 2007, 46, 821.
- 40B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537–541.
- 41
- 41aT. Taguchi, AIP Conf. Proc. 2007, 882, 162–164;
- 41bT. Taguchi, T. Ozawa, H. Yashiro, Phys. Scr. 2005, 2005, 205;
10.1238/Physica.Topical.115a00205 Google Scholar
- 41cK. Asakura, in X-Ray Absorption Fine Structure for Catalysts and Surfaces, Vol. 2, WORLD SCIENTIFIC, 1996, pp. 33–58.