Lanthanum-Based Perovskites for Catalytic Oxygen Evolution Reaction
Dr. Jeferson A. Dias
Departamento de Engenharia de Materiais, Laboratório de Formulação e Sínteses Cerâmicas-LAFSCer, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorCorresponding Author
Dr. Marcos A. S. Andrade Jr
Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIEC, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorHugo L. S. Santos
Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIEC, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorProf. Dr. Márcio R. Morelli
Departamento de Engenharia de Materiais, Laboratório de Formulação e Sínteses Cerâmicas-LAFSCer, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorCorresponding Author
Prof. Dr. Lucia H. Mascaro
Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIEC, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorDr. Jeferson A. Dias
Departamento de Engenharia de Materiais, Laboratório de Formulação e Sínteses Cerâmicas-LAFSCer, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorCorresponding Author
Dr. Marcos A. S. Andrade Jr
Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIEC, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorHugo L. S. Santos
Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIEC, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorProf. Dr. Márcio R. Morelli
Departamento de Engenharia de Materiais, Laboratório de Formulação e Sínteses Cerâmicas-LAFSCer, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorCorresponding Author
Prof. Dr. Lucia H. Mascaro
Departamento de Química, Centro de Caracterização de Materiais Funcionais-CDMF-LIEC, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, São Carlos/SP, Brazil, 13565-905
Search for more papers by this authorGraphical Abstract
Perovskite exploration: This Review provides a summary of the main results of lanthanum-based perovskites applied as electrocatalysts for the oxygen evolution reaction (OER). Beyond that, the main influence of A and B site substitutions, structural defects creation, structural distortions, material morphologies, the presence of supports, and orbital occupancy configurations on the perovskites’ OER catalytic activity are discussed in detail.
Abstract
Lanthanum-based perovskites have been gaining attention in recent years as cost-attractive and efficient catalysts for the oxygen evolution reaction (OER). Showing a simplified LaBO3 stoichiometry (B=transition metal cation), the structure and composition of the perovskites play key roles in their electrocatalytic performance. This paper aims to review the physicochemical concepts, structures, and recent advances on kinetic parameters for lanthanum-based perovskites for catalytic OER. First, advances on mechanisms and descriptors that govern general perovskites will be discussed in detail. Next, the current results for lanthanum cobaltite (LaCoO3), nickelate (LaNiO3), ferrite (LaFeO3), manganite (LaMnO3), and their derivations will be provided. Moreover, the existing results on less explored lanthanum perovskites for catalytic OER (LaCrO3, LaCuO3, LaVO3, and LaTiO3) will be also presented. The impacts of structural defects, orbital occupancy, materials morphology, and composition on the perovskite electrocatalytic performance will be assessed for each case. Finally, emerging trends for lanthanum-based perovskites will be provided.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. Wan, H. Zhu, S. Zhang, H. Jin, Y. Wen, Electrochim. Acta. 2018, 279, 301–310. doi:10.1016/j.electacta.2018.05.077.
- 2R. Sankannavar, A. Sarkar, Int. J. Hydrogen Energy. 2018, 43, ( 2018) 4682–4690. doi:10.1016/j.ijhydene.2017.08.092.
- 3K. Zhang, Y. Li, S. Deng, S. Shen, Y. Zhang, G. Pan, Q. Xiong, Q. Liu, X. Xia, X. Wang, ChemElectroChem. 2019, 6, 3530–3548. doi:10.1002/celc.201900448.
- 4S. Egelund, M. Caspersen, A. Nikiforov, P. Møller, Int. J. Hydrogen Energy. 2016, 41, 10152–10160. doi:10.1016/j.ijhydene.2016.05.013.
- 5N. Cheng, Y. Xue, Q. Liu, J. Tian, L. Zhang, A. M. Asiri, X. Sun, Electrochim. Acta. 2015, 163, 102–106. doi:10.1016/j.electacta.2015.02.099.
- 6J. Scholz, M. Risch, K. A. Stoerzinger, G. Wartner, Y. Shao-horn, C. Jooss, J. Phys. Chem. 2016, 120, 27746–27756. doi:10.1021/acs.jpcc.6b07654.
- 7A. Phys, L. Wang, Y. Du, Appl. Phys. Lett. 2018, 112, 261601–261607. doi:10.1063/1.5030897.
- 8J. Liu, E. Jia, L. Wang, K. A. Stoerzinger, H. Zhou, C. S. Tang, X. Yin, X. He, E. Bousquet, M. E. Bowden, A. T. S. Wee, S. A. Chambers, Y. Du, Adv. Sci. 2019, 6, 1901073. doi:10.1002/advs.201901073.
- 9Y. Bu, S. Kim, O. Kwon, Q. Zhong, G. Kim, ChemElectroChem. 2019, 6, 1520–1524. doi:10.1002/celc.201801775.
- 10W. T. Hong, M. Risch, K. A. Stoerzinger, A. Grimaud, Energy Environ. Sci. 2015, 8, 1404–1427. doi:10.1039/c4ee03869j.
- 11H. Zhang, Z. Zhang, N. Li, W. Yan, Z. Zhu, J. Catal. 2017, 352, 239–245. doi:10.1016/j.jcat.2017.05.019.
- 12Y. Sun, X. Wu, L. Yuan, M. Wang, M. Han, L. Luo, B. Zheng, K. Huang, S. Feng, Chem. Commun. 2017, 53, 2499–2502. doi:10.1039/c7cc00140a.
- 13D. Liang, C. Lian, Q. Xu, M. Liu, H. Liu, H. Jiang, C. Li, Appl. Catal. B 2020, 268, 118417. doi:10.1016/j.apcatb.2019.118417.
- 14F. W. T. Goh, Z. Liu, X. Ge, Y. Zong, G. Du, T. S. A. Hor, Electrochim. Acta. 2013, 114, 598–604. doi:10.1016/j.electacta.2013.10.116.
- 15J. Hu, Q. Liu, L. Shi, Z. Shi, H. Huang, Appl. Surf. Sci. 2017, 402, 61–69. doi:10.1016/j.apsusc.2017.01.060.
- 16K. Liu, J. Li, Q. Wang, X. Wang, D. Qian, J. Jiang, J. Li, Z. Chen, J. Alloys Compd. 2017, 725, 260–269. doi:10.1016/j.jallcom.2017.07.178.
- 17C. L. McBean, H. Liu, M. E. Scofield, L. Li, L. Wang, A. Bernstein, S. S. Wong, ACS Appl. Mater. Interfaces. 2017, 9, 24634–24648. doi:10.1021/acsami.7b06855.
- 18J. Chen, J. Wu, Y. Liu, X. Hu, D. Geng, Phys. Status Solidi Appl. Mater. Sci. 2018, 215, 1800380. doi:10.1002/pssa.201800380.
- 19U. Gupta, B. S. Naidu, C. N. R. Rao, Dalton Trans. 2015, 44, 472–474. doi:10.1039/c4dt02732a.
- 20R. Sankannavar, K. C. Sandeep, S. Kamath, A. K. Suresh, A. Sarkar, J. Electrochem. Soc. 2018, 165, 3236–3245. doi:10.1149/2.0301815jes.
- 21J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai, A. M. Kolpak, K. P. Johnston, K. J. Stevenson, Nat. Commun. 2016, 7, 11053. doi:10.1038/ncomms11053.
- 22Y. Hu, B. Tao, F. Shang, M. Zhou, D. Hao, R. Fan, D. Xia, Y. Yang, A. Pang, K. Lin, Appl. Surf. Sci. 2020, 513, 145849. doi:10.1016/j.apsusc.2020.145849.
- 23A. Galal, N. F. Atta, M. A. Hefnawy, J. Electroanal. Chem. 2020, 862, 114009. doi:10.1016/j.jelechem.2020.114009.
- 24B. Niu, C. Lu, W. Yi, S. Luo, X. Li, X. Zhong, X. Zhao, B. Xu, Appl. Catal. B 2020, 270, 118842. doi:10.1016/j.apcatb.2020.118842.
- 25Y. Qiu, H. Li, Y. Liu, B. Chi, J. Pu, J. Li, J. Alloys Compd. 2020, 829, 154503. doi:10.1016/j.jallcom.2020.154503.
- 26K. Lopez, G. Park, H. J. Sun, J. C. An, S. Eom, J. Shim, J. Appl. Electrochem. 2015, 45, 313–323. doi:10.1007/s10800-015-0798-z.
- 27X. Rong, J. Parolin, A. M. Kolpak, ACS Catal. 2016, 6, 1153–1158. doi:10.1021/acscatal.5b02432.
- 28J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546–550. doi:10.1038/nchem.1069.
- 29L. L. Zhang, Z. L. Wang, D. Xu, X. B. Zhang, L. M. Wang, Int. J. Smart Nano Mater. 2013, 4, 27–46. doi:10.1080/19475411.2012.659227.
- 30W. D. Kingery, H. K. Bowen, Introduction to Ceramics, Vol. 2, John Wiley & Sons, West Sussex, 1960, pp. 1–1032.
- 31Y. Chiang, D. P. Birnie, W. D. Kingery, Physical ceramics, Vol.1, John Wiley & Sons, West Sussex, 1997, pp. 1–544.
- 32S. S. Hashim, F. Liang, W. Zhou, J. Sunarso, ChemElectroChem. 2019, 6, 3549–3569. doi:10.1002/celc.201900391.
- 33C. Hwang, O. Gwon, H. Jo, K. M. Ok, G. Kim, ChemElectroChem. 2017, 4, 468–471. doi:10.1002/celc.201600755.
- 34J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, H. N. Lee, J. Am. Chem. Soc. 2016, 138, 2488–2491. doi:10.1021/jacs.5b11713.
- 35P. Gao, M. Grätzel, M. K. Nazeeruddin, Energy Environ. Sci. 2014, 7, 2448–2463. doi:10.1021/acs.jpclett.5b02893.
- 36H. S. Kushwaha, A. Halder, Electrochim. Acta. 2017, 252, 532–540. doi:10.1016/j.electacta.2017.09.030.
- 37B. E. Hayden, F. K. Rogers, J. Electroanal. Chem. 2018, 819, 275–282. doi:10.1016/j.jelechem.2017.10.056.
- 38X. Cheng, E. Fabbri, M. Nachtegaal, I. E. Castelli, M. El Kazzi, R. Haumont, N. Marzari, T. J. Schmidt, Chem. Mater. 2015, 27, 7662–7672. doi:10.1021/acs.chemmater.5b03138.
- 39F. Liang, J. Sunarso, J. Mao, Z. Yang, W. Zhou, ChemElectroChem. 2017, 4, 550–556. doi:10.1002/celc.201600718.
- 40E. Omari, M. Omari, D. Barkat, Polyhedron. 2018, 156, 116–122. doi:10.1016/j.poly.2018.09.031.
- 41H. Zhu, P. Zhang, S. Dai, ACS Catal. 2015, 5, 6370–6385. doi:10.1021/acscatal.5b01667.
- 42A. Ashok, A. Kumar, R. R. Bhosale, F. Almomani, S. S. Malik, S. Suslov, F. Tarlochan, J. Electroanal. Chem. 2018, 809, 22–30. doi:10.1016/j.jelechem.2017.12.043.
- 43I. Yamada, A. Takamatsu, K. Asai, T. Shirakawa, H. Ohzuku, A. Seno, T. Uchimura, H. Fujii, S. Kawaguchi, K. Wada, H. Ikeno, S. Yagi, J. Phys. Chem. C. 2018, 122, 27885–27892. doi:10.1021/acs.jpcc.8b09287.
- 44L. Liu, D. D. Taylor, E. E. Rodriguez, M. R. Zachariah, Chem. Commun. 2016, 52, 10369–10372. doi:10.1039/c6cc01997 h.
- 45Z. Li, L. Lv, J. Wang, X. Ao, Y. Ruan, D. Zha, G. Hong, Nano Energy. 2018, 47, 199–209. doi:10.1016/j.nanoen.2018.02.051.
- 46K. Elumeeva, J. Masa, J. Sierau, F. Tietz, M. Muhler, W. Schuhmann, Electrochim. Acta. 2016, 208, 25–32. doi:10.1016/j.electacta.2016.05.010.
- 47J. Xu, C. Chen, Z. Han, Y. Yang, J. Li, Q. Deng, Nanomaterials. 2019, 9, 1161. doi:10.3390/nano9081161.
- 48Y. Lu, A. Ma, Y. Yu, R. Tan, C. Liu, P. Zhang, D. Liu, J. Gui, ACS Sustainable Chem. Eng. 2019, 7, 2906–2910. doi:10.1021/acssuschemeng.8b05717.
- 49J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science. 2012, 334, 1383–1385. doi:10.1126/science.1212858.
- 50H. Wang, J. Wang, Y. Pi, Q. Shao, Y. Tan, X. Huang, Angew. Chem. 2019, 131, 2338–2342. doi:10.1002/ange.201812545.
10.1002/ange.201812545 Google Scholar
- 51J. Il Jung, M. Risch, S. Park, M. G. Kim, G. Nam, H. Y. Jeong, Y. Shao-Horn, J. Cho, Energy Environ. Sci. 2016, 9, 176–183. doi:10.1039/c5ee03124a.
- 52R. J. D. Tilley, Perovskites: structure-property relationships, Vol. 1, John Wiley & Sons, West Sussex, 2016, pp. 1–76.
- 53T. Barth, Nor. Geol. Tidsskr. 1929, 8, 201–216.
- 54E. K. Al-Shakarchi, N. B. Mahmood, J. Mod. Phys. 2011, 2, 1420–1428. doi:10.4236/jmp.2011.211175.
10.4236/jmp.2011.211175 Google Scholar
- 55K. Momma, F. Izumi, J. Appl. Crystallogr. 2008, 41, 653–658. doi:10.1107/S0021889808012016.
- 56T. V. Aksenova, M. V. Anan'ev, L. Y. Gavrilova, V. A. Cherepanov, Inorg. Mater. 2007, 43, 296–300. doi:10.1134/s0020168507030168.
- 57S. Manzoor, S. Husain, J. Appl. Phys. 2018, 124, 065110. doi:10.1063/1.5025252.
- 58Z. Dai, C. Lee, B. Kim, C. Kwak, J. Yoon, H. Jeong, J. Lee, ACS Appl. Mater. Interfaces. 2014, 6, 16217–16226. doi:10.1021/am504386q.
- 59Z. Zhao, H. Dai, J. Deng, Y. Du, Y. Liu, L. Zhang, Microporous Mesoporous Mater. 2012, 163, 131–139. doi:10.1016/j.micromeso.2012.07.006.
- 60M. Lebid, M. Omari, Arabian J. Sci. Eng. 2014, 39, 147–152. doi:10.1007/s13369-013-0883-8.
- 61D. S. Bick, A. Kindsmüller, G. Staikov, F. Gunkel, D. Müller, T. Schneller, R. Waser, I. Valov, Electrochim. Acta. 2016, 218, 156–162. doi:10.1016/j.electacta.2016.09.116.
- 62M. A. R. Anjum, M. H. Lee, J. S. Lee, ACS Catal. 2018, 8, 8296–8305. doi:10.1021/acscatal.8b01794.
- 63Q. Guo, X. Li, H. Wei, Y. Liu, L. Li, X. Yang, X. Zhang, H. Liu, Z. Front, Chem. 2019, 7, ( 2019). doi:10.3389/fchem.2019.00224.
- 64P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, Vol. 5, Oxford University Press, Oxford, 2010, 483–490.
- 65H. Bethe, Ann. Phys. 1929, 395, 133–208. doi:10.1002/andp.19293950202.
10.1002/andp.19293950202 Google Scholar
- 66D. Manthey, Orbital Viwer 1.04 [Computer software], 2005, retrieved from https://orbitals.com/orb/ov.htm, accessed Jan. 04 2020.
- 67R. Sharpe, J. Munarriz, T. Lim, Y. Jiao, J. W. Niemantsverdriet, V. Polo, J. Gracia, Top. Catal. 2018, 61, 267–275. doi:10.1007/s11244-018-0895-4.
- 68F. Calle-Vallejo, N. G. Inoglu, H. Y. Su, J. I. Martínez, I. C. Man, M. T. M. Koper, J. R. Kitchin, J. Rossmeisl, Chem. Sci. 2013, 4, 1245–1249. doi:10.1039/c2sc21601a.
- 69A. J. Bard, L. R. Faulkner, Electrochemical methods, fundamentals and applications, Vol. 2, John Wiley & Sons, New York, 2001, pp. 1–805.
- 70C. Brett, A. M. O. Brett, Electrochemistry: Principles, methods, and applications, Vol. 1, New York, 1994, 1–456.
10.1007/978-94-011-0691-7_1 Google Scholar
- 71J. Kim, X. Yin, K. Tsao, S. Fang, H. Yang, J. Am. Chem. Soc. 2014, 136, 14646–14649.doi.org/10.1021/ja506254 g.
- 72J. Gracia, Phys. Chem. Chem. Phys. 2017, 19, 20451–20456. doi:10.1039/c7cp04289b.
- 73B. Han, M. Risch, Y. Lee, C. Ling, H. Jia, Y. Shao-horn, Phys. Chem. Chem. Phys. 2015, 17, ( 2015) 22576–22580. doi:10.1039/c5cp04248 h.
- 74K. A. Stoerzinger, X. Renshaw Wang, J. Hwang, R. R. Rao, W. T. Hong, C. M. Rouleau, D. Lee, Y. Yu, E. J. Crumlin, Y. Shao-Horn, Top. Catal. 2018, 61, 2161–2174. doi:10.1007/s11244-018-1070-7.
- 75M. G. A. Ranieri, M. Cilense, E. C. Aguiar, C. C. Silva, A. Z. Simões, E. Longo, Ceram. Int. 2016, 42, 2234–2240. doi:10.1016/j.ceramint.2015.10.016.
- 76F. A. Kröger, H. J. Vink, Solid State Phys. 1956, 3, 307–435. doi:10.1016/S0081-1947(08)60135-6.
- 77J. S. Yoo, Y. Liu, X. Rong, A. M. Kolpak, J. Phys. Chem. Lett. 2018, 9, 1473–1479. doi:10.1021/acs.jpclett.8b00154.
- 78E. L. Brosha, R. Mukundan, D. R. Brown, F. H. Garzon, J. H. Visser, M. Zanini, Z. Zhou, E. M. Logothetis, Sens. Actuators B 2000, 69, 171–182.
- 79C. Xiangfeng, P. Siciliano, Sens. Actuators B 2003, 94, 197–200. doi:10.1016/S0925-4005(03)00340-X.
- 80M. Ghasdi, H. Alamdari, Sens. Actuators B 2010, 148, 478–485. doi:10.1016/j.snb.2010.05.056.
- 81E. E. Ateia, A. T. Mohamed, M. Morsy, J. Mater. Sci. Mater. Electron. 2019, 30, 19254–19261. doi:10.1007/s10854-019-02284-y.
- 82P. Herve, T. Ngamou, K. Kohse-höinghaus, N. Bahlawane, Catal. Commun. 2011, 12, 1344–1350. doi:10.1016/j.catcom.2011.04.029.
- 83H. J. Hwang, M. Awano, J. Eur. Ceram. Soc. 2001, 21, 2103–2107. doi.org/10.1016/S0955-2219(01)00181-9.
- 84S. Sartipi, A. A. Khodadadi, Y. Mortazavi, Appl. Catal. B 2008, 83, 214–220. doi:10.1016/j.apcatb.2008.02.014.
- 85P. Xu, R. Tu, S. Zhang, M. Yang, Q. Li, T. Goto, L. Zhang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 2018, 33, 368–374. doi:10.1007/s11595-018-1831-x.
- 86K. Gao, S. Li, Appl. Surf. Sci. 2012, 258, 6460–6464. doi:10.1016/j.apsusc.2012.03.061.
- 87H. Liu, Y. Zhang, X. Zhang, H. Chen, R. Xie, K. Zheng, X. Wu, J. Huo, J. Alloys Compd. 2019, 777, 679–687. doi:10.1016/j.jallcom.2018.11.048.
- 88L. Wang, Q. Pang, Q. Song, X. Pan, L. Jia, Fuel. 2015, 140, 267–274. doi:10.1016/j.fuel.2014.09.107.
- 89W. Y. Jung, S. S. Hong, J. Ind. Eng. Chem. 2013, 19, 157–160. doi:10.1016/j.jiec.2012.07.018.
- 90G. Thornton, B. C. Tofield, A. W. Hewat, J. Solid State Chem. 1986, 61, 301–307. doi:10.1016/0022-4596(86)90035-6.
- 91S. Medling, Y. Lee, H. Zheng, J. F. Mitchell, J. W. Freeland, B. N. Harmon, F. Bridges, Phys. Rev. Lett. 2012, 109, 157204–157209. doi:10.1103/PhysRevLett.109.157204.
- 92J. Fujioka, Y. Yamasaki, H. Nakao, R. Kumai, Y. Murakami, M. Nakamura, M. Kawasaki, Y. Tokura, Phys. Rev. Lett. 2013, 111, 27206–272011. doi:10.1103/PhysRevLett.111.027206.
- 93V. V. Mehta, N. Biskup, C. Jenkins, E. Arenholz, M. Varela, Y. Suzuki, Phys. Rev. B 2015, 91 (2015) 144418–144430. doi:10.1103/PhysRevB.91.144418.
- 94A. D. Rata, A. Herklotz, L. Schultz, Eur. J. Phys. 2010, 219, 215–219. doi:10.1140/epjb/e2010-00203-6.
- 95J. Scholz, M. Risch, G. Wartner, C. Luderer, V. Roddatis, C. Jooss, Catalysts. 2017, 7, 15–19. doi:10.3390/catal7050139.
- 96S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu, Z. Hu, J. Zhao, L. Shi, J. Zeng, Nat. Commun. 2016, 7, 11510–11517. doi:10.1038/ncomms11510.
- 97B. Alkan, S. Cychy, S. Varhade, M. Muhler, C. Schulz, W. Schuhmann, H. Wiggers, C. Andronescu, ChemElectroChem. 2019, 6, 4266–4274. doi:10.1002/celc.201900168.
- 98K. A. Stoerzinger, W. Seok Choi, H. Jeen, H. N. Lee, Y. Shao-Horn, J. Phys. Chem. Lett. 2015, 6, ( 2015) 487–492. doi:10.1021/jz502692a.
- 99Y. Duan, S. Sun, S. Xi, X. Ren, Y. Zhou, G. Zhang, H. Yang, Y. Du, Z. J. Xu, Chem. Mater. 2017, 29, 10534–10541. doi:10.1021/acs.chemmater.7b04534.
- 100P. H. Benhangi, A. Alfantazi, E. Gyenge, Electrochim. Acta. 2014, 123, 42–50. doi:10.1016/j.electacta.2013.12.102.
- 101Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen, J. P. M. Veder, D. Guan, R. O'Hayre, M. Li, G. Wang, H. Wang, W. Zhou, Z. Shao, Nat. Commun. 2020, 11, 2002. doi:10.1038/s41467-020-15873-x.
- 102K. Elumeeva, J. Masa, F. Tietz, F. Yang, W. Xia, M. Muhler, W. Schuhmann, ChemElectroChem. 2016, 3, 138–143. doi:10.1002/celc.201500353.
- 103X. Ge, F. W. T. Goh, B. Li, T. S. A. Hor, J. Zhang, P. Xiao, X. Wang, Y. Zong, Z. Liu, Nanoscale. 2015, 7, 9046–9054. doi:10.1039/c5nr01272d.
- 104N. Fujiwara, T. Nagai, T. Ioroi, H. Arai, Z. Ogumi, J. Power Sources. 2020, 451, 227736. doi:10.1016/j.jpowsour.2020.227736.
- 105Y. M. Hu, Y. X. Hu, M. C. Liu, J. J. Li, L. Bin Kong, Y. C. Luo, L. Kang, Mater. Chem. Phys. 2018, 205, 494–501. doi:10.1016/j.matchemphys.2017.11.032.
- 106F. Karimi, B. A. Peppley, Electrochim. Acta. 2017, 246, 654–670. doi:10.1016/j.electacta.2017.06.048.
- 107Y. Wang, J. Wang, G. Han, C. Du, Q. Deng, Y. Gao, G. Yin, Y. Song, Ceram. Int. 2018, 45, 2411–2417. doi:10.1016/j.ceramint.2018.10.160.
- 108L. Liao, X. Bian, J. Xiao, B. Liu, M. D. Scanlon, H. H. Girault, Phys. Chem. Chem. Phys. 2014, 16, 10088–10094. doi:10.1039/c3cp54754j.
- 109H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today. 2016, 11, 601–625. doi:10.1016/j.nantod.2016.09.001.
- 110D. U. Lee, H. W. Park, M. G. Park, V. Ismayilov, Z. Chen, ACS Appl. Mater. Interfaces. 2015, 7, 902–910. doi:10.1021/am507470 f.
- 111Y. Bai, T. Siponkoski, J. Peräntie, H. Jantunen, J. Juuti, Appl. Phys. Lett. 2017, 110, 063903. doi:10.1063/1.4974735.
- 112B. Liu, G. Liu, H. Feng, C. Wang, H. Yang, Y. Wang, Mater. Des. 2016, 89, 715–720. doi:10.1016/j.matdes.2015.10.034.
- 113V. Tripkovic, H. A. Hansen, J. M. García Lastra, T. Vegge, J. Phys. Chem. C 2018, 122, 1135–1147. doi:10.1021/acs.jpcc.7b07660.
- 114F. Hou, Y. Qin, T. Xu, M. Xu, J. Electroceram. 2002, 8, 243–247. doi:10.1023/A:1020858419251.
- 115B. Wang, S. Gu, Y. Ding, Y. Chu, Z. Zhang, X. Ba, Q. Zhang, X. Li, Analyst. 2013, 138, 362–367. doi:10.1039/c2an35989 h.
- 116D. Hernandez, M. Velasquez, P. Ayrault, D. Lopez, J. J. Fernandez, A. Santamaria, C. Batiot-Dupeyrat, Appl. Catal. A 2013, 467, 315–324. doi:10.1016/j.apcata.2013.07.016.
- 117Y. J. Su, K. L. Pan, M. B. Chang, Int. J. Hydrogen Energy. 2014, 39, 4917–4925. doi:10.1016/j.ijhydene.2014.01.077.
- 118T. Maneerung, K. Hidajat, S. Kawi, Int. J. Hydrogen Energy. 2017, 42, 9840–9857. doi:10.1016/j.ijhydene.2017.01.060.
- 119P. P. Silva, R. A. R. Ferreira, F. B. Noronha, C. E. Hori, Catal. Today. 2017, 289, 211–221. doi:10.1016/j.cattod.2016.10.003.
- 120L. Jia, J. Li, W. Fang, J. Alloys Compd. 2010, 489, L13–L16. doi:10.1016/j.jallcom.2009.09.104.
- 121T. Lv, M. Wu, M. Guo, Q. Liu, L. Jia, Chem. Eng. J. 2019, 356, 580–591. doi:10.1016/j.cej.2018.09.031.
- 122J. Xu, C. Sun, Z. Wang, Y. Hou, Z. Ding, S. Wang, Chem. Eur. J. 2018, 24, 18512–18517. doi:10.1002/chem.201802920.
- 123M. Mao, J. Xu, L. Li, S. Zhao, X. Li, Y. Li, Z. Liu, Ionics 2019, 25, 4533–4546. doi:10.1007/s11581-019-03210-2.
- 124J. Yang, Acta Crystallogr. Sect. B 2008, 64, 281–286. doi:10.1107/S0108768108005739.
- 125E. Y. Tsymbal, E. R. A. Dagotto, C. B. Eom, R. Ramesh, Multifunctional Oxide Heterostructures, Vol. 1, Oxford University Press, Oxford, 2012, pp. 3–384.
10.1093/acprof:oso/9780199584123.003.0001 Google Scholar
- 126K. Persson, Materials Project – LaNiO3[Crystallographic Information File], 2020, retrieved from https://materialsproject.org/materials/mp- 1075921/, accessed Jan. 23 2020. doi:10.17188/1194344.
- 127J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre, J. B. Torrance, Phys. Rev. B. 1992, 46, 4414–4425. doi:10.1103/PhysRevB.46.4414.
- 128J. S. Yoo, X. Rong, Y. Liu, A. M. Kolpak, ACS Catal. 2018, 8, 4628–4636. doi:10.1021/acscatal.8b00612.
- 129Y. Qiu, R. Gao, W. Yang, L. Huang, Q. Mao, J. Yang, L. Sun, Z. Hu, X. Liu, Chem. Mater. 2020, 32, 1864–1875. doi:10.1021/acs.chemmater.9b04287.
- 130J. Zhang, C. Zhang, W. Li, Q. Guo, H. Gao, Y. You, Y. Li, Z. Cui, K. C. Jiang, H. Long, D. Zhang, S. Xin, ACS Appl. Mater. Interfaces. 2018, 10, 5543–5550. doi:10.1021/acsami.7b17289.
- 131M. P. Browne, C. Domínguez, P. E. Colavita, Curr. Opin. Electrochem. 2018, 7, 208–215. doi:10.1016/j.coelec.2017.09.012.
- 132Y. Yang, W. Zhou, R. Liu, M. Li, T. E. Rufford, Z. Zhu, ChemElectroChem. 2015, 2, 200–203. doi:10.1002/celc.201402279.
- 133A. Kostopoulou, K. Brintakis, N. K. Nasikas, E. Stratakis, Nat. Photonics 2019, 8, 1607–1640. doi:10.1515/nanoph-2019-0119.
- 134A. Herklotz, D. Lee, E. J. Guo, T. L. Meyer, J. R. Petrie, H. N. Lee, J. Phys. Condens. Matter. 2017, 29, 49 (2017). doi:10.1088/1361-648X/aa949b.
- 135Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu, Z. Shao, Chem. Mater. 2016, 28, 1691–1697. doi:10.1021/acs.chemmater.5b04457.
- 136C. Chen, F. Ciucci, Chem. Mater. 2016, 28, 7058–7065. doi:10.1021/acs.chemmater.6b02953.
- 137S. Palimar, S. D. Kaushik, V. Siruguri, D. Swain, A. E. Viegas, C. Narayana, N. G. Sundaram, Dalton Trans. 2016, 45, 13547–13555. doi:10.1039/c6dt01819j.
- 138E. Cao, Z. Chu, H. Wang, W. Hao, L. Sun, Y. Zhang, Ceram. Int. 2018, 44, 7180–7185. doi:10.1016/j.ceramint.2018.01.163.
- 139Y. Zhang, B. Jiang, M. Yuan, P. Li, W. Li, X. Zheng, J. Sol-Gel Sci. Technol. 2016, 79, 167–175. doi:10.1007/s10971-016-4025-0.
- 140H. Zhang, P. Song, D. Han, Q. Wang, Phys. E 2014, 63, 21–26. doi:10.1016/j.physe.2014.03.018.
- 141E. Cao, Y. Yang, T. Cui, Y. Zhang, W. Hao, L. Sun, H. Peng, X. Deng, Appl. Surf. Sci. 2017, 393, 134–143. doi:10.1016/j.apsusc.2016.10.013.
- 142J. Qin, Z. Cui, X. Yang, S. Zhu, Z. Li, Y. Liang, Sens. Actuators B 2015, 209, 706–713. doi:10.1016/j.snb.2014.12.046.
- 143T. Horita, T. Shimonosono, H. Kishimoto, K. Yamaji, M. E. Brito, H. Yokokawa, Solid State Ionics 2012, 4, pp. 141–145. doi:10.1016/j.ssi.2012.04.026.
- 144A. Masi, S. Frangini, D. Pumiglia, L. Della Seta, A. Masci, S. J. McPhail, M. Carlini, Mater. Corros. 2017, 68, 536–545. doi:10.1002/maco.201609177.
- 145F. Bidrawn, G. Kim, N. Aramrueang, J. M. Vohs, R. J. Gorte, J. Power Sources. 2010, 195, 720–728. doi:10.1016/j.jpowsour.2009.08.034.
- 146M. H. Hung, M. V. M. Rao, D. S. Tsai, Mater. Chem. Phys. 2007, 101, 297–302. doi:10.1016/j.matchemphys.2006.05.008.
- 147N. Lakshminarayanan, J. N. Kuhn, S. A. Rykov, J. M. M. Millet, U. S. Ozkan, Catal. Today. 2010, 157, 446–450. doi:10.1016/j.cattod.2010.03.037.
- 148M. A. Mutalib, F. Aziz, N. A. Jamaludin, N. Yahya, A. F. Ismail, M. A. Mohamed, M. Z. M. Yusop, W. N. W. Salleh, J. Jaafar, N. Yusof, Korean J. Chem. Eng. 2018, 35, 548–556. doi:10.1007/s11814-017-0281-0.
- 149V. M. Gaikwad, J. R. Sheikh, S. A. Acharya, J. Sol-Gel Sci. Technol. 2015, 76, 27–35. doi:10.1007/s10971-015-3746-9.
- 150S. N. Tijare, M. V. Joshi, P. S. Padole, P. A. Mangrulkar, S. S. Rayalu, N. K. Labhsetwar, Int. J. Hydrogen Energy. 2012, 37, 10451–10456. doi:10.1016/j.ijhydene.2012.01.120.
- 151J. Li, W. Guan, X. Yan, Z. Wu, W. Shi, Catal. Lett. 2018, 148, 23–29. doi:10.1007/s10562-017-2206-2.
- 152Z. Wang, R. Gao, X. Deng, G. Chen, W. Cai, C. Fu, Ceram. Int. 2019, 45, 1825–1830. doi:10.1016/j.ceramint.2018.10.071.
- 153A. Mitra, A. S. Mahapatra, A. Mallick, A. Shaw, M. Ghosh, P. K. Chakrabarti, J. Alloys Compd. 2017, 726, 1195–1204. doi:10.1016/j.jallcom.2017.08.074.
- 154L. Sangaletti, L. E. Depero, B. Allieri, P. Nunziante, E. Traversa, J. Eur. Ceram. Soc. 2001, 21, 719–726. doi:10.1016/S0955-2219(00)00267-3.
- 155J. Jung, H. Y. Jeong, J. Lee, M. G. Kim, J. Cho, Angew. Chem. Int. Ed. 2014, 53, 4582–4586. doi:10.1002/anie.201311223.
- 156T. Okugawa, K. Ohno, Y. Noda, S. Nakamura, J. Phys. Condens. Matter. 2018, 30, 7. doi:10.1088/1361-648X/aa9e70.
- 157H. Arnold, M. I. Aroyo, E. F. Bertaut, International Tables for Crystalography - Vol. A: Space -group symmetry, 5th ed., Springer Netherlands, Dordrecht, 2005.
- 158M. Chen, Q. Liu, S. W. Wang, E. Wang, X. Guo, S. L. Chou, Adv. Energy Mater. 2019, 9, 1803609. doi:10.1002/aenm.201803609.
- 159Q. Peng, Y. Wen, B. Shan, R. Chen, ECS Trans. 2015, 64, 27–35. doi:10.1149/06435.0027ecst.
- 160I. M. Nassar, S. Wu, L. Li, X. Li, Chem. Sel. 2018, 3, 968–972. doi:10.1002/slct.201702997.
- 161S. Akbari, M. M. Foroughi, H. Hassani Nadiki, S. Jahani, J. Electrochem. Sci. Eng. 2019, 9, 255. doi:10.5599/jese.634.
- 162R. Sorita, T. Kawano, Sens. Actuators B 1997, 40, 29–32. doi:10.1016/S0925-4005(97)80195-5.
- 163E. N. Armstrong, T. Striker, V. Ramaswamy, J. A. Ruud, E. D. Wachsman, Sens. Actuators B 2011, 158, 159–170. doi:10.1016/j.snb.2011.05.060.
- 164H. Zhang, J. Yi, Mater. Lett. 2018, 216, 196–198. doi:10.1016/j.matlet.2018.01.018.
- 165D. Xu, L. Luo, Y. Ding, L. Jiang, Y. Zhang, X. Ouyang, B. Liu, J. Electroanal. Chem. 2014, 727, 21–26. doi:10.1016/j.jelechem.2014.05.010.
- 166Y. Li, S. Yao, L. Xue, Y. Yan, J. Mater. Sci. 2009, 44, 4455–4459. doi:10.1007/s10853-009-3673-7.
- 167J. Hu, L. Zhang, B. Lu, X. Wang, H. Huang, Vacuum. 2019, 159, 59–68. doi:10.1016/j.vacuum.2018.10.021.
- 168J. Hu, J. Ma, L. Wang, H. Huang, J. Alloys Compd. 2014, 583, 539–545. doi:10.1016/j.jallcom.2013.09.030.
- 169H. Huang, M. He, L. Zhang, B. Lu, J. Hu, Curr. Nanosci. 2017, 14, 117–126. doi:10.2174/1573413713666170929121157.
- 170J. Hu, Y. Liu, J. Men, L. Zhang, H. Huang, Solid State Sci. 2016, 61, 239–245. doi:10.1016/j.solidstatesciences.2016.10.008.
- 171M. Baldini, T. Muramatsu, M. Sherafati, H. K. Mao, L. Malavasi, P. Postorino, S. Satpathy, V. V. Struzhkin, Proc. Natl. Acad. Sci. USA 2015, 112, 10869–10872. doi:10.1073/pnas.1424866112.
- 172T. Ogawa, A. Sandhu, M. Chiba, H. Takeuchi, Y. Koizumi, J. Magn. Magn. Mater. 2005, 290–291, 933–936. doi:10.1016/j.jmmm.2004.11.293.
- 173K. Kuepper, M. C. Falub, K. C. Prince, V. R. Galakhov, I. O. Troyanchuk, S. G. Chiuzbaian, M. Matteucci, D. Wett, R. Szargan, N. A. Ovechkina, Y. M. Mukovskii, M. Neumann, J. Phys. Chem. B. 2005, 109, 9354–9361. doi:10.1021/jp044447w.
- 174A. Anshul, S. S. Amritphale, S. Kaur, N. Chandra, A. K. Gupta, R. Yadav, Int. J. Appl. Ceram. Technol. 2012, 9, 214–220. doi:10.1111/j.1744-7402.2011.02652.x.
- 175J. M. Vila-Fungueiriño, B. Rivas-Murias, B. Rodríguez-González, O. Txoperena, D. Ciudad, L. E. Hueso, M. Lazzari, F. Rivadulla, ACS Appl. Mater. Interfaces. 2015, 7, 5410–5414. doi:10.1021/am508941j.
- 176S. G. Choi, A. S. Reddy, S. J. Wang, M. Hong, K. H. Kwon, H. H. Park, J. Ceram. Soc. Jpn. 2009, 117, 1249–1253. doi:10.2109/jcersj2.117.1249.
- 177X. Zhu, D. Shi, L. Zhang, Y. Sun, W. Song, L. Wang, T. M. Silver, S. Dou, J. Alloys Compd. 2008, 459, 83–86. doi:10.1016/j.jallcom.2007.05.053.
- 178E. Hernández, V. Sagredo, G. E. Delgado, Rev. Mex. Fis. 2015, 61, 166–169.
- 179J. Rodríguez-Carvajal, M. Hennion, F. Moussa, A. H. Moudden, L. Pinsard, A. Revcolevschi, Phys. Rev. B 1998, 57, R3189.
- 180C. Li, Z. Yu, H. Liu, K. Chen, J. Phys. Chem. Solids. 2018, 113, 151–156. doi:10.1016/j.jpcs.2017.10.039.
- 181D. U. Lee, M. G. Park, H. W. Park, M. H. Seo, V. Ismayilov, R. Ahmed, Z. Chen, Electrochem. Commun. 2015, 60, 38–41. doi:10.1016/j.elecom.2015.08.001.
- 182Y. Lv, Z. Li, Y. Yu, J. Yin, K. Song, B. Yang, L. Yuan, X. Hu, J. Alloys Compd. 2019, 801, 19–26. doi:10.1016/j.jallcom.2019.06.114.
- 183A. Seong, J. Kim, O. Kwon, H. Y. Jeong, R. J. Gorte, J. M. Vohs, G. Kim, Nano Energy. 2020, 71, 104564. doi:10.1016/j.nanoen.2020.104564.
- 184C. Zhu, A. Nobuta, I. Nakatsugawa, T. Akiyama, Int. J. Hydrogen Energy. 2013, 38, 13238–13248. doi:10.1016/j.ijhydene.2013.07.113.
- 185J. X. Flores-Lasluisa, F. Huerta, D. Cazorla-Amorós, E. Morallón, J. Colloid Interface Sci. 2019, 556, 658–666. doi:10.1016/j.jcis.2019.08.112.
- 186Y. Zhao, Y. Hang, Y. Zhang, Z. Wang, Y. Yao, X. He, C. Zhang, D. Zhang, Electrochim. Acta. 2017, 232, 296–302. doi:10.1016/j.electacta.2017.02.155.
- 187M. H. Seo, H. W. Park, D. U. Lee, M. G. Park, Z. Chen, ACS Catal. 2015, 5, 4337–4344. doi:10.1021/acscatal.5b00114.
- 188S. Guo, L. Zou, Z. Wang, M. Sun, Y. Chen, B. Chi, J. Pu, J. Li, ChemElectroChem. 2019, 6, 5864–5869. doi:10.1002/celc.201901671.
- 189G. Murdachaew, K. Laasonen, J. Phys. Chem. C. 2018, 122, 25882–25892. doi:10.1021/acs.jpcc.8b08519.
- 190Y. Ren, A. A. Nugroho, A. A. Menovsky, J. Strempfer, U. Rütt, F. Iga, T. Takabatake, C. W. Kimball, Phys. Rev. B 2003, 67, 141071–141076. doi:10.1103/physrevb.67.014107.
- 191P. Bordet, C. Chaillout, M. Marezio, Q. Huang, A. Santoro, S. W. Cheong, H. Takagi, C. S. Oglesby, B. Batlogg, J. Solid State Chem. 1993, 106, 253–270. doi:10.1006/jssc.1993.1285.
- 192M. Cwik, T. Lorenz, J. Baier, R. Müller, G. André, F. Bourée, F. Lichtenberg, M. Braden, R. Schmitz, E. Müller-Hartmann, Phys. Rev. B 2003, 68, 060401. doi:10.1103/PhysRevB.68.060401.
- 193M. Arao, Y. Inoue, Y. Koyama, J. Phys. Chem. Solids. 2002, 63, 995–997. doi:10.1016/S0022-3697(02)00054-9.
- 194M. Karppinen, H. Yamauchi, H. Suematsu, O. Fukunaga, Phys. C 1996, 264, 268–274. doi:10.1016/0921-4534(96)00251-1.
- 195A. Niemczyk, Z. Du, A. Olszewska, M. Marzec, M. Gajewska, K. Świerczek, H. Zhao, B. Poudel, B. Dabrowski, J. Mater. Chem. A. 2019, 7, 27403–27416. doi:10.1039/c9ta09244 g.
- 196J. F. Bringley, B. A. Scott, S. J. La Placa, T. R. McGuire, F. Mehran, M. W. McElfresh, D. E. Cox, Phys. Rev. B. 1993, 47, 15269–15275. doi:10.1103/PhysRevB.47.15269.
- 197J. S. Zhou, L. G. Marshall, J. B. Goodenough, Phys. Rev. B 2014, 89, 245138. doi:10.1103/PhysRevB.89.245138.
- 198P. Bordet, C. Chaillout, M. Marezio, Q. Huang, A. Santoro, S.-W. Cheong, H. Takagi, C. S. Oglesby, B. Batlogg, Acta Crystallogr. Sect. A 1993, 49, c306–c307. doi:10.1107/s0108767378091485.
- 199S. P. Jiang, S. H. Chan, J. Mater. Sci. 2004, 39, 4405–4439. doi:10.1023/b:jmsc.0000034135.52164.6b.
- 200V. Parey, A. Shukla, A. Parveen, A. Bano, P. Khare, N. K. Gaur, AIP Conf. Proc. 2016, 1728, 020026. doi:10.1063/1.4946076.
10.1063/1.4946076 Google Scholar
- 201Y. L. Lee, M. J. Gadre, Y. Shao-Horn, D. Morgan, Phys. Chem. Chem. Phys. 2015, 17, 21643–21663. doi:10.1039/c5cp02834e.
- 202S. Qiao, J. Qi, D. Zhang, A. Xu, C. Zhang, S. Liu, B. Wang, L. Liu, W. Zhang, Nanotechnology. 2019, 30, n. 42 doi:10.1088/1361-6528/ab3309.
- 203W. E. Hatfield, J. H. Miller, High-Temperature Superconducting Materials: Preparations, Properties, and Processing, Vol. 1 (Eds.: ), Marcel Dekker Inc., New York, 1988, 1–367.
- 204H. C. Yu, K. Z. Fung, Solid-state Ionic Devices III: Proceedings of the International Symposium, Vol. 2002–26, (Eds.: ), The Electrochemical Society Inc., Pennington, 2003, 385–389.
- 205J. Hanss, H.-J. Krüger, Angew. Chem. Int. Ed. 1996, 35, 2827–2830. doi:10.1002/anie.199628271.
- 206A. W. Webb, E. F. Skelton, S. B. Qadri, E. R. Carpenter, M. S. Osofsky, R. J. Soulen, V. Letourneau, Phys. Lett. A. 1989, 137, 205–206. doi:10.1016/0375-9601(89)90212–0.
- 207V. C. C. Wang, Phys. Chem. Chem. Phys. 2016, 18, 22364–22372. doi:10.1039/c6cp03500k.