Silver Nanocluster Redox-Couple-Promoted Nonclassical Electron Transfer: An Efficient Electrochemical Wolff Rearrangement of α-Diazoketones
Surendra G. Sudrik Dr.
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3614
Search for more papers by this authorNirmalya K. Chaki
Physical and Materials Chemistry, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3044
Search for more papers by this authorVilas B. Chavan Dr.
Division of Chemical Engineering and Process Development, National Chemical Laboratory, Pune 411 008, India
Search for more papers by this authorSambhaji P. Chavan
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3614
Search for more papers by this authorSubhash P. Chavan Dr.
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3614
Search for more papers by this authorHarikisan R. Sonawane Dr.
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3614
Search for more papers by this authorK. Vijayamohanan Dr.
Physical and Materials Chemistry, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3044
Search for more papers by this authorSurendra G. Sudrik Dr.
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3614
Search for more papers by this authorNirmalya K. Chaki
Physical and Materials Chemistry, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3044
Search for more papers by this authorVilas B. Chavan Dr.
Division of Chemical Engineering and Process Development, National Chemical Laboratory, Pune 411 008, India
Search for more papers by this authorSambhaji P. Chavan
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3614
Search for more papers by this authorSubhash P. Chavan Dr.
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3614
Search for more papers by this authorHarikisan R. Sonawane Dr.
Division of Organic Chemistry: Technology, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3614
Search for more papers by this authorK. Vijayamohanan Dr.
Physical and Materials Chemistry, National Chemical Laboratory, Pune 411 008, India, Fax: (+91) 20-2589-3044
Search for more papers by this authorGraphical Abstract
Abstract
In this work we report the unique electrocatalytic role of benzoic acid protected silver nanoclusters (Agn, mean core diameter 2.5 nm) in the Wolff rearrangement (Scheme 1) of α-diazoketones. More specifically, the presence of a Agn0/Agn+ redox couple facilitates a nonclassical electron-transfer process, involving chemical reaction(s) interposed between two electron-transfer steps occurring in opposite directions. Consequently, the net electron transfer between the electron mediator (Agn) and α-diazoketone is zero. In-situ UV-visible studies using pyridine as a nucleophilic probe indicate the participation of α-ketocarbene/ketene as important reaction intermediates. Controlled potential coulometry of α-diazoketones using Agn as the anode results in the formation of Wolff rearranged carboxylic acids in excellent yield, without sacrificing the electrocatalyst.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2111/2006/f500696_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. M. Trost,I. Fleming, Comprehensive Organic Synthesis, Wiley, New York, 1991.
- 2M. P. Doyle,M. A. Mckarvey,T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo compounds, Wiley, New York, 1998.
- 3S. G. Sudrik, T. Maddanimath, N. K Chaki, S. P. Chavan, S. P. Chavan, H. R. Sonawane, K. Vijayamohanan, Org. Lett. 2003, 5, 2355–2358.
- 4W. Kirmse, Eur. J. Org. Chem. 2002, 2193–2256.
- 5K. P. Zeller, A. Blocher, P. Haiss, Mini-Rev. Org. Chem. 2004, 1, 291–308.
- 6M. S. Newman, P. F. Beal, J. Am. Chem. Soc. 1950, 72, 5163–5165.
- 7A. J. Fry,in The Chemistry of the Diazonium and Diazo Groups (Ed.: ), Wiley Interscience, Chichester (UK), 1978, pp. 489–498.
10.1002/9780470771549.ch10 Google Scholar
- 8V. E. Petrosyan, M. E. Niyazymbetov, Russ. Chem. Rev. 1989, 58, 644–653.
10.1070/RC1989v058n07ABEH003467 Google Scholar
- 9V. Parker, D. Bethell, J. Am. Chem. Soc. 1987, 109, 5066–5072.
- 10It is pertinent to note that mass spectrometry detects the formation of CRCs from α-diazoketones in the gas phase.
- 10a The Chemistry of the Diazonium and Diazo Groups, Part I and Part II (Ed.: ), Wiley Interscience, Chichester (UK), 1978;
- 10bJ. S. Splitter,In Application of Mass Spectrometry (Ed.: ), VCH, Weinheim (Germany), 1994.
- 11
- 11aRecently with the help of mass spectroscopic technique, Stotlz and co-workers have detected the formation of charged, Fischer type, copper and silver α-ketocarbene intermediates during metal-mediated Wolff rearrangement of diazomalonates. R. R. Julian, J. A. May, B. M. Stoltz, J. L. Beauchamp, J. Am. Chem. Soc. 2003, 125, 4478–4486;
- 11bit is pertinent to note that mass spectrometry detects the formation of CRCs from α-diazoketones in the gas phase;
- 11csee reference [10a].
- 12D. A. Van-Galen, M. P. Young, M. D. Hawley, R. N. Mcdonald, J. Am. Chem. Soc. 1985, 107, 1465–1470.
- 13C. R. Jones, J. Org. Chem. 1981, 46, 3870–3873.
- 14J. P. Toscano, M. S. Platz, J. Am. Chem. Soc. 1995, 117, 1712–1721.
- 15I. Likhotvorik, Z. Zhu, E. L. Tae, E. Tippmann, B. T. Hill, M. S. Platz, J. Am. Chem. Soc. 2001, 123, 6061–6068.
- 16A. P. Scott, M. S. Platz, L. Radom, J. Am. Chem. Soc. 2001, 123, 6069–6076.
- 17S. G. Sudrik, S. P. Chavan, K. R. S. Chandrakumar, S. Pal, S. K. Date, S. P. Chavan, H. R. Sonawane, J. Org. Chem. 2002, 67, 1574–1579.
- 18The rearrangement occurs either in concerted or stepwise manner depending on the conformational equilibrium of the α-diazoketones and the mode of activation (photochemical verses thermal); for example, Csizmadia and co-workers have shown photochemically induced Wolff rearrangement of 3-diazo-butan-2-one involves oxiirene intermediates:
- 18aG. Imre, J. F. Csizmadia, O. P. Strausz, J. Am. Chem. Soc. 1968, 90, 7360–7361;
- 18bsee reference [5].
- 19Differential pulse voltammetric response of monodispersed gold nanoparticles reveals the occurrence of quantized oxidative and reductive charging of an electrical double layer.
- 19aS. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, R. L. Whetten, Science 1998, 280, 2098–2101;
- 19bJ. J. Pietron, J. F. Hicks, R. W. Murray, J. Am. Chem. Soc. 1999, 121, 5565–5570;
- 19cA. C. Templeton, W. P. Wuelfing, R. W. Murray, Acc. Chem. Res. 2000, 33, 27–36.
- 20W. K. Paik, S. Eu, K. Lee, S. Chon, M. Kim, Langmuir 1997, 13, 5218–5221.
- 21A. Henglein, J. Phys. Chem. 1993, 97, 5457–5471.
- 22S. Link, M. A. El-Sayed, J. Phys. Chem. B 1999, 103, 8410–8426.
- 23N. K. Chaki, S. G. Sudrik, H. R. Sonawane, K. Vijayamohanan, Chem. Commun. 2002, 76–77.
- 24S. W. Feldberg, L. Jeftic, J. Phys. Chem. 1972, 76, 2439–2446.
- 25D. H. Evans, Chem. Rev. 1990, 90, 739–751.
- 26W. Cheng, S. Dong, E. Wang, Electrochem. Commun. 2002, 4, 412–416.
- 27We have also observed this peak splitting in other solvents over a specific range of scan rate (ν=0.4 to 2.0 V s−1) depending on the nature of α-diazoketones.
- 28The redox potential of α-diazoketones over silver nanoclusters, as well as the difference between the half-wave potential of α-diazoketones over Agn (E1/2 Dk) and the half-wave potential of Agn (E1/2) appears to explain the experimentally observed rate of the Wolff rearrangement for substituted α-diazoacetophenones. Introduction of electron-donating groups like methoxy leads to a substantial decrease in the reaction rate. Further work in this direction is underway.
- 28aY. Yukawa, Y. Tsuno, T. Ibata, Bull. Chem. Soc. Jpn. 1967, 40, 2613–2617;
- 28bY. Yukawa, Y. Tsuno, T. Ibata, Bull. Chem. Soc. Jpn. 1967, 40, 2618–2623.
- 29Y. Chiang, A. J. Kresge, V. V. Popik, J. Am. Chem. Soc. 1999, 121, 5930–5932.
- 30K. Gademann, M. Ernst, D. Hoyer, D. Seebach, Angew. Chem. 1999, 111, 1302–1304;
10.1002/(SICI)1521-3757(19990503)111:9<1302::AID-ANGE1302>3.0.CO;2-L Google ScholarAngew. Chem. Int. Ed. 1999, 38, 1223–1226.10.1002/(SICI)1521-3773(19990503)38:9<1223::AID-ANIE1223>3.0.CO;2-A CASPubMedWeb of Science®Google Scholar
- 31M. Moreno-Manas, R. Pleixats, Acc. Chem. Res. 2003, 36, 638–643.
- 32H. V. R. Dias, R. G. Browning, S. A. Polach, H. V. K. Diyabalange, C. V. Lovely, J. Am. Chem. Soc. 2003, 125, 9270–9271.