Pentacene-Based Polycyclic Aromatic Hydrocarbon Dyads with Cofacial Solid-State π-Stacking
Dan Lehnherr
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
Search for more papers by this authorAdrian H. Murray
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
Search for more papers by this authorRobert McDonald Dr.
X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
Search for more papers by this authorMichael J. Ferguson Dr.
X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
Search for more papers by this authorRik R. Tykwinski Prof. Dr.
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
New address: Institut für Organische Chemie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen (Germany)
Search for more papers by this authorDan Lehnherr
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
Search for more papers by this authorAdrian H. Murray
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
Search for more papers by this authorRobert McDonald Dr.
X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
Search for more papers by this authorMichael J. Ferguson Dr.
X-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
Search for more papers by this authorRik R. Tykwinski Prof. Dr.
Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada)
New address: Institut für Organische Chemie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen (Germany)
Search for more papers by this authorGraphical Abstract
Give me five! Pentacene-based polycyclic aromatic hydrocarbon (PAH) dyads are synthesized via an unsymmetrical pentacene building block. These molecules exhibit cofacial solid-state π-stacking as a result of the large aromatic chromophores. The choice of the PAH attached to the pentacene (see picture) influences the electronic properties as determined by UV/Vis absorption/emission spectroscopy and cyclic voltammetry.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
chem_200902179_sm_miscellaneous_information.pdf3.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. G. Harvey in Polycyclic Aromatic Hydrocarbons, Wiley-VCH, Weinheim, 1997.
- 2
- 2aM. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev. 2004, 104, 4891–4945;
- 2bJ. E. Anthony, Chem. Rev. 2006, 106, 5028–5048;
- 2cJ. E. Anthony, Angew. Chem. 2008, 120, 460–492;
10.1002/ange.200604045 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 452–483;
- 2dA. R. Murphy, J. M. J. Fréchet, Chem. Rev. 2007, 107, 1066–1096.
- 3
- 3aM. M. Payne, S. R. Parkin, J. E. Anthony, J. Am. Chem. Soc. 2005, 127, 8028–8029;
- 3bR. Mondal, B. K. Shah, D. C. Neckers, J. Am. Chem. Soc. 2006, 128, 9612–9613;
- 3cR. Mondal, R. M. Adhikari, B. K. Shah, D. C. Neckers, Org. Lett. 2007, 9, 2505–2508;
- 3dD. Chun, Y. Cheng, F. Wudl, Angew. Chem. 2008, 120, 8508–8513;
10.1002/ange.200803345 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 8380–8385;
- 3eI. Kaur, N. N. Stein, R. P. Kopreski, G. P. Miller, J. Am. Chem. Soc. 2009, 131, 3424–3425.
- 4
- 4aS.-C. Lo, P. L. Burns, Chem. Rev. 2007, 107, 1097–1116;
- 4bM. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789–794;
- 4cC. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 15–26.
- 5
- 5aJ. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc. 2001, 123, 9482–9483;
- 5bJ. E. Anthony, D. L. Eaton, S. R. Parkin, Org. Lett. 2002, 4, 15–18.
- 6For pentacene oligo- and polymers, see:
- 6aS. Tokito, K.-H. Weinfurtner, H. Fujikawa, T. Tsutsui, Y. Taga, Proc. SPIE-Int. Soc. Opt. Eng. 2001, 4105, 69–74;
- 6bT. Okamoto, Z. Bao, J. Am. Chem. Soc. 2007, 129, 10308–10309;
- 6cD. Lehnherr, R. R. Tykwinski, Org. Lett. 2007, 9, 4583–4586;
- 6dT. Okamoto, Y. Jiang, F. Qu, A. C. Mayer, J. E. Parmer, M. D. McGehee, Z. Bao, Macromolecules 2008, 41, 6977–6980;
- 6eD. Lehnherr, J. Gao, F. A. Hegmann, R. R. Tykwinski, Org. Lett. 2008, 10, 4779–4782;
- 6fD. Lehnherr, R. McDonald, M. J. Ferguson, R. R. Tykwinski, Tetrahedron 2008, 64, 11449–11461;
- 6gD. Lehnherr, J. Gao, F. A. Hegmann, R. R. Tykwinski, J. Org. Chem. 2009, 74, 5017–5024.
- 7
- 7aB. Milián Medina, J. E. Anthony, J. Gierschner, ChemPhysChem 2008, 9, 1519–1523;
- 7bI. Kaur, W. Jia, R. P. Kopreski, S. Selvarasah, M. R. Dokmeci, C. Pramanik, N. E. McGruer, G. P. Miller, J. Am. Chem. Soc. 2008, 130, 16274–16286.
- 8For X-ray crystallographic structures of unsymmetrical pentacenes, see:
- 8aT. Takahashi, M. Kitamura, B. Shen, K. Nakajima, J. Am. Chem. Soc. 2000, 122, 12876–12877;
- 8bC. R. Swartz, S. R. Parkin, J. E. Bullock, J. E. Anthony, A. C. Mayer, G. G. Malliaras, Org. Lett. 2005, 7, 3163–3166;
- 8cT. Takahashi, S. Li, W. Huang, F. Kong, K. Nakajima, B. Shen, T. Ohe, K-i. Kanno, J. Org. Chem. 2006, 71, 7967–7977;
- 8dY.-M. Wang, N.-Y. Fu, S.-H. Chan, H.-K. Lee, H. N. C. Wong, Tetrahedron 2007, 63, 8586–8597;
- 8eD. Lehnherr, R. McDonald, R. R. Tykwinski, Org. Lett. 2008, 10, 4163–4166;
- 8fY.-F. Lim, Y. Shu, S. R. Parkin, J. E. Anthony, G. G. Malliaras, J. Mater. Chem. 2009, 19, 3049–3056.
- 9A. Boudebous, E. C. Constable, C. E. Housecroft, M. Neuburger, S. Shaffner, Acta Crystallogr. Sect. C 2006, 62, o 243-o245.
- 10Under an inert atmosphere, thermal decomposition of 6,13-diethynylated pentacenes has been attributed to the Diels–Alder reaction between the alkyne and the pentacene chromophore, while photochemical decomposition leads to [4+4] intermolecular dimerization similar to anthracene. See:
- 10aM. M. Payne, S. A. Odom, S. R. Parkin, J. E. Anthony, Org. Lett. 2004, 6, 3325–3328;
- 10bP. Coppo, S. G. Yeates, Adv. Mater. 2005, 17, 3001–3005;
- 10cY. Kim, J. E. Whitten, T. M. Swager, J. Am. Chem. Soc. 2005, 127, 12122–12130;
- 10dS. H. Chan, H. K. Lee, Y. M. Wang, N. Y. Fan, X. M. Chen, Z. W. Cai, H. N. C. Wong, Chem. Commun. 2005, 66–68;
- 10eJ. Chen, S. Subramanian, S. R. Parkin, M. Siegler, K. Gallup, C. Haughn, D. C. Martin, J. E. Anthony, J. Mater. Chem. 2008, 18, 1961–1969.
- 11For a study of substituent-size effects on solid-state packing and electronic influence on stability, see:
- 11areference [5b, 7b, 10e];
- 11bB. H. Northrop, K. N. Houk, A. Maliakal, Photochem. Photobiol. Sci. 2008, 7, 1463–1468.
- 12See the Supporting Information for spectra and details.
- 13Fluorescence quantum efficiencies were obtained by a comparison to cresyl violet perchlorate in methanol, see: S. J. Isak, E. M. Eyring, J. Phys. Chem. 1992, 96, 1738–1742.
- 14The wavelength used as the absorption edge corresponded to the lowest energy absorption with a molar absorptivity ε≥1000 L mol−1 cm−1.
- 15
- 15aX-ray crystallographic data for 2 c: C45H40Si, Mr=608.86; crystal dimensions 0.46×0.40×0.24 mm; orthorombic space group Pna21 (no. 33); a=34.1011(13), b=13.6639(5), c=14.6209(6) Å; V=6812.7(5) Å3; Z=8; ρcalcd=1.187 g cm−3; μ=0.100 mm−1; λ=0.71073 Å; T=−100 °C; 2θmax=55.08°; total data collected=58 526; R1=0.0386 [13 955 observed reflections with [Fo2≥2σ(Fo2)]; wR2=0.1043 for 829 variables and 15 673 unique reflections with [Fo2≥−3σ(Fo2)]; residual electron density=0.453 and −0.254 e Å−3.
- 15bCCDC-736049 (2 b) CCDC-736050 (2 c), CCDC-736051 (2 d), CCDC-736052 (2 f) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 16X-ray crystallographic data for 2 d: C49H42Si, Mr=658.92; crystal dimensions 0.27×0.20×0.17 mm; triclinic space group P
(no. 2); a=9.1190(10), b=12.8567(14), c=16.5030(18) Å; α=70.9187(13); β=83.3738(14), γ=82.2715(15)°; V=1806.6(3) Å3; Z=2; ρcalcd=1.211 g cm−3; μ=0.100 mm−1; λ=0.71073 Å; T=−100 °C; 2θmax=52.74°; total data collected=14 497; R1=0.0416 [5703 observed reflections with [Fo2≥2σ(Fo2)]; wR2=0.1147 for 451 variables and 7355 unique reflections with [Fo2≥−3σ(Fo2)]; residual electron density=0.279 and −0.244 e Å−3. See also ref. [15 b].
- 17X-ray crystallographic data for 2 f: C49H42Si, Mr=658.92; crystal dimensions 0.27×0.11×0.08 mm; triclinic space group P
(no. 2); a=8.5889(11), b=14.8703(19), c=15.312(2) Å; α=71.0863(16); β=81.8475(17), γ=78.8361(17)°; V=1808.4(4) Å3; Z=2; ρcalcd=1.210 g cm−3; μ=0.100 mm−1; λ=0.71073 Å; T=−100 °C; 2θmax=53.02°; total data collected=14 613; R1=0.0482 [5103 observed reflections with [Fo2≥2σ(Fo2)]; wR2=0.1324 for 451 variables and 7456 unique reflections with [Fo2≥−3σ(Fo2)]; residual electron density=0.390 and −0.367 e Å−3. See also ref. [15 b].
- 18X-ray crystallographic data for 2 b: C45H40Si, Mr=608.86; crystal dimensions 0.66×0.18×0.08 mm; triclinic space group P
(no. 2); a=7.6451(14), b=13.410(3), c=34.704(7) Å; α=88.638(2), β=84.211(2), γ=73.839(2)°; V=3399.9(11) Å3; Z=4; ρcalcd=1.189 g cm−3; μ=0.100 mm−1. λ=0.71073 Å; T=−100 °C; 2θmax=50.50°; total data collected=24 203; R1=0.0732 [6935 observed reflections with [Fo2≥2σ(Fo2)]; wR2=0.2164 for 863 variables, 72 restraints, and 12 272 unique reflections with [Fo2≥−3σ(Fo2)]; residual electron density=0.514 and −0.429 e Å−3. See also ref. [15 b]. The disordered isopropyl groups of molecule B were restrained to have the same geometry as that of one of the ordered isopropyl groups of molecule A by use of the SHELXL SAME instruction. Additionally, the SiC distances of the disordered triisopropylsilyl group were allowed to refine to a common value. Likewise, the CC distances of the secondary carbon atoms of the minor component were allowed to refine to a common value.
- 19Torsion angles were calculated from the angle between the least squares plane generated from the carbon atoms of each acene.
- 20
- 20aT. Siegrist, C. Kloc, J. H. Schön, B. Batlogg, R. C. Haddon, S. Berg, G. A. Thomas, Angew. Chem. 2001, 113, 1782–1786;
10.1002/1521-3757(20010504)113:9<1782::AID-ANGE17820>3.0.CO;2-Q Google ScholarAngew. Chem. Int. Ed. 2001, 40, 1732–1736. For a discussion of the polymorphs of pentacene, see:10.1002/1521-3773(20010504)40:9<1732::AID-ANIE17320>3.0.CO;2-7 CASPubMedWeb of Science®Google Scholar
- 20bC. C. Mattheus, G. A. de Wijs, R. A. de Groot, T. T. M. Palstra, J. Am. Chem. Soc. 2003, 125, 6323–6330;
- 20cC. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Boer, T. T. M. Palstra, Synth. Met. 2003, 138, 475–481.
- 21Neighboring molecules are not related by symmetry, and the least-squares planes of the acenes in molecule A and B are not parallel, thus requiring an alternative method of measuring the interplanar distances. Distances were measured from every individual acene carbon in molecule A to the neighboring least squares plane generated from the carbon atoms of both acenes in molecule B (and vice versa) to obtain the average value reported.
- 22Interplanar distances were calculated from the distance between the least squares plane generated from the carbon atoms of covalently bonded acenes (the pentacene and its covalently bonded PAH moiety).
- 23J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971–5003.