Fe-Catalyzed Multicomponent Reactions: The Regioselective Alkoxy Allylation of Activated Olefins and its Application in Sequential Fe Catalysis
Dipl.-Chem. Dipl.-Ing. André P. Dieskau
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Search for more papers by this authorDipl.-Chem. Michael S. Holzwarth
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Search for more papers by this authorCorresponding Author
Prof. Dr. Bernd Plietker
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285Search for more papers by this authorDipl.-Chem. Dipl.-Ing. André P. Dieskau
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Search for more papers by this authorDipl.-Chem. Michael S. Holzwarth
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Search for more papers by this authorCorresponding Author
Prof. Dr. Bernd Plietker
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285Search for more papers by this authorGraphical Abstract
Iron adds it: Allylic carbonates react with various activated olefins in an Fe-catalyzed decarboxylative alkoxy allylation to afford densely substituted products in good yields and with high regioselectivities under mild conditions (see scheme). The robustness of the catalytic system is demonstrated by the first Fe-catalyzed alkoxy allylation allylic sulfenylation and three-component coupling sequence.
Abstract
We present herein a versatile and broadly applicable Fe-catalyzed regioselective alkoxy allylation of activated double bonds. Substituted allylic carbonates are converted into the corresponding σ-enyl Fe complexes by reaction with Bu4N[Fe(CO)3(NO)] (TBAFe) at 30 °C. The liberated alkoxide adds to an activated double bond with the generation of a C-nucleophile, which is trapped by the σ-enyl Fe complex in a regioselective manner. Alternatively, the alkoxide acts as a base in deprotonating an external pronucleophile, which undergoes Michael addition. The method is characterized by a broad functional group tolerance, mild reaction conditions, low catalyst loadings, and high regioselectivities in favor of the ipso-substitution product.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
chem_201103009_sm_miscellaneous_information.pdf2.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1The challenge of adjacent quaternary carbon centers in natural product synthesis:
- 1aE. A. Peterson, L. E. Overman, Proc. Natl. Acad. Sci. USA 2004, 101, 11943; the stereoselective construction of quaternary carbon centers:
- 1bM. Shimizu, Angew. Chem. 2011, 123, 6122;
- 1cK. Fuji, Chem. Rev. 1993, 93, 2037;
- 1dE. J. Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 2092;
- 2For Pd-catalyzed allylic substitutions, see:
- 2aB. M. Trost, C. Lee, in Catalytic Asymmetric Synthesis, 2nd ed. ), Wiley-VCH, New York, 2000, 593;
- 2bA. Pfaltz, M. Lautens, in Comprehensive Asymmetric Catalysis (Eds.: ), Springer, Heidelberg, 1999, 833;
- 2cZ. Lu, S. Ma, Angew. Chem. 2008, 120, 264;
- 2dB. M. Trost, J. Org. Chem. 2004, 69, 5813;
- 2eB. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921;
- 2fT. Graening, H.-G. Schmalz, Angew. Chem. 2003, 115, 2684;
- 2gG. Helmchen, J. Organomet. Chem. 1999, 576, 203;
- 2hB. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395.
- 3
- 3aB. M. Trost, Y. Zhang, J. Am. Chem. Soc. 2007, 129, 14548;
- 3bA. V. Malkov, L. Gouriou, G. C. Lloyd-Jones, I. Starý, V. Langer, P. Spoor, V. Vinader, P. Kočovský, Chem. Eur. J. 2006, 12, 6910;
- 3cG. C. Lloyd-Jones, S. W. Krska, D. L. Hughes, L. Gouriou, V. D. Bonnet, K. Jack, Y. Sun, R. A. Reamer, J. Am. Chem. Soc. 2004, 126, 702;
- 3dB. M. Trost, K. Dogra, I. Hachiya, T. Emura, D. L. Hughes, S. Krska, R. A. Reamer, M. Palucki, N. Yasuda, P. J. Reider, Angew. Chem. 2002, 114, 2009;
- 3eF. Glorius, A. Pfaltz, Org. Lett. 1999, 1, 141.
- 4
- 4aN. Kanbayashi, K. Onitsuka, Angew. Chem. 2011, 123, 5303;
- 4bN. Kanbayashi, K. Onitsuka, J. Am. Chem. Soc. 2010, 132, 1206;
- 4cM. Kawatsura, F. Ata, S. Wada, S. Hayase, H. Unob, T. Itoh, Chem. Commun. 2007, 298;
- 4dM. Kawatsura, F. Ata, S. Hayase, T. Itoh, Chem. Commun. 2007, 4283;
- 4eC. Bruneau, J.-L. Renaud, B. Demerseman, Chem. Eur. J. 2006, 12, 5178;
- 4fI. Fernandez, R. Hermatschweiler, P. S. Pregosin, A. Albinati, S. Rizzato, Organometallics 2006, 25, 323;
- 4gR. Hermatschweiler, I. Fernandez, F. Breher, P. S. Pregosin, L. F. Veiros, M. J. Calhorda, Angew. Chem. 2005, 117, 4471;
- 4hM. D. Mbaye, B. Demerseman, J.-L. Renaud, L. Toupet, C. Bruneau, Angew. Chem. 2003, 115, 5220;
- 4iB. M. Trost, P. L. Fraisse, Z. T. Ball, Angew. Chem. 2002, 114, 1101;
- 4jY. Morisaki, T. Kondo, T.-A. Misudo, Organometallics 1999, 18, 4742.
- 5
- 5aM. Gärtner, S. Mader, K. Seehafer, G. Helmchen, J. Am. Chem. Soc. 2011, 133, 2072;
- 5bS. Ueno, J. F. Hartwig, Angew. Chem. 2008, 120, 1954;
- 5cS. Spiess, C. Welter, G. Franck, J.-P. Taquet, G. Helmchen, Angew. Chem. 2008, 120, 7764;
- 5dG. Helmchen, A. Dahnz, P. Dübon, M. Schelwies, R. Weihofen, Chem. Commun. 2007, 675;
- 5eD. Markovic, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 11680;
- 5fY. Yamashita, A. Gopalarathnam, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7508;
- 5gD. J. Weix, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7720;
- 5hM. J. Pouy, A. Leitner, D. J. Weix, S. Ueno, J. F. Hartwig, Org. Lett. 2007, 9, 3949;
- 5iS. Shekhar, B. Trantow, A. Leitner, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 11770;
- 5jR. Takeuchi, S. Kezuka, Synthesis 2006, 3349.
- 6
- 6aD. K. Leahy, P. A. Evans, in Modern Rhodium-Catalyzed Organic Reactions (Ed.: ), Wiley-VCH, Weinheim, 2005, 191;
- 6bF. Menard, T. M. Chapman, C. Dockendorff, M. Lautens, Org. Lett. 2006, 8, 4569;
- 6cB. A. Ashfeld, K. A. Miller, A. J. Smith, K. Tran, S. F. Martin, Org. Lett. 2005, 7, 1661;
- 6dB. A. Ashfeld, K. Miller, S. F. Martin, Org. Lett. 2004, 6, 1321;
- 6eP. A. Evans, J. E. Robinson, K. K. Moffett, Org. Lett. 2001, 3, 3269;
- 6fP. A. Evans, L. J. Kennedy, Org. Lett. 2000, 2, 2213;
- 6gP. A. Evans, D. K. Leahy, J. Am. Chem. Soc. 2000, 122, 5012;
- 6hP. A. Evans, J. D. Nelson, J. Am. Chem. Soc. 1998, 120, 5581.
- 7
- 7aM. Jegelka, B. Plietker, Chem. Eur. J. 2011, 17, 10417;
- 7bM. Holzwarth, A. Dieskau, M. Tabassam, B. Plietker, Angew. Chem. 2009, 121, 7387;
- 7cM. Jegelka, B. Plietker, Org. Lett. 2009, 11, 3462;
- 7dB. Plietker, A. Dieskau, K. Möws, A. Jatsch, Angew. Chem. 2008, 120, 204;
- 7eB. Plietker, Angew. Chem. 2006, 118, 6200;
- 7fB. Plietker, Angew. Chem. 2006, 118, 1497;
- 7gJ. L. Roustan, J. Y. Merour, F. Houlihan, Tetrahedron Lett. 1979, 20, 3721;
- 7hY. Xu, B. Zhou, J. Org. Chem. 1987, 52, 974;
- 7iB. Zhou, Y. Xu, J. Org. Chem. 1988, 53, 4421.
- 8For recent reviews on Fe catalysis, see:
- 8aB. Plietker (Ed.), Advances in Sustainable Metal Catalysis: Iron Catalysis (Topics in Organometallic Chemistry), Springer, Heidelberg, 2011;
- 8bB. Plietker (Ed.), Iron Catalysis in Organic Synthesis, Wiley-VCH, Weinheim, 2008;
- 8cA. Correa, O. García Manchano, C. Bolm, Chem. Soc. Rev. 2008, 37, 1108;
- 8dC. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217;
- 8eA. Dieskau, B. Plietker, Eur. J. Org. Chem. 2009, 775;
- 8fS. Enthaler, K. Junge, M. Beller, Angew. Chem. 2008, 120, 3363;
- 9Selected examples of Fe-catalyzed transformations:
- 9aW. M. Czaplik, M. Mayer, A. Jacobi von Wangelin, Angew. Chem. 2009, 121, 616;
- 9bM. Carril, A. Correa, C. Bolm, Angew. Chem. 2008, 120, 4940;
- 9cG. Cahiez, V. Habiak, C. Duplais, A. Moyeux, Angew. Chem. 2007, 119, 4442;
- 9dL. K. Ottesen, F. Ek, R. Olsson, Org. Lett. 2006, 8, 1771;
- 9eR. B. Bedford, M. Betham, D. W. Bruce, A. A. Danopoulos, R. M. Frost, M. Hird, J. Org. Chem. 2006, 71, 1104;
- 9fB. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, J. Org. Chem. 2004, 69, 3943;
- 9gM. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 3686;
- 9hC. Duplais, F. Bures, I. Sapountzis, T. J. Korn, G. Cahiez, P. Knochel, Angew. Chem. 2004, 116, 3028;
- 9iT. Nagano, T. Hayashi, Org. Lett. 2004, 6, 1297;
- 9jA. Fürstner, A. Leitner, M. Mendez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856;
- 9kM. Tamura, J. J. Kochi, J. Am. Chem. Soc. 1971, 93, 1487;
- 9lA. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 8773;
- 9mC. P. Casey, H. Guan, J. Am. Chem. Soc. 2007, 129, 5816;
- 9nC. P. Casey, H. Guan, J. Am. Chem. Soc. 2009, 131, 2499;
- 9oS. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004, 126, 13794;
- 9pJ. Y. Wu, B. Moreau, T. Ritter, J. Am. Chem. Soc. 2009, 131, 12915;
- 9qN. S. Shaikh, S. Enthaler, K. Junge, M. Beller, Angew. Chem. 2008, 120, 2531;
- 10For TBAFe-catalyzed decarboxylative etherification of allylic carbonates, see: R. Trivedi, J. A. Tunge, Org. Lett. 2009, 11, 5650.
- 11H. Nakamura, M. Sekido, M. Ito, Y. Yamamoto, J. Am. Chem. Soc. 1998, 120, 6838.
- 12For an excellent review on Pd-catalyzed cascade reactions of highly activated olefins, see:
- 12aN. T. Patil, Y. Yamamoto, Synlett 2007, 13, 1994;
- 12bR. L. Xie, J. R. Hauske, Tetrahedron Lett. 2000, 41, 10167;
- 12cM. Sekido, K. Aoyagi, H. Nakamura, C. Kabuto, Y. Yamamoto, J. Org. Chem. 2001, 66, 7142;
- 12dJ.-G. Shim, Y. Yamamoto, J. Org. Chem. 1998, 63, 3067;
- 12eK. Aoyagi, H. Nakamura, Y. Yamamoto, J. Org. Chem. 2002, 67, 5977;
- 12fN. T. Patil, Z. Huo, Y. Yamamoto, Tetrahedron 2007, 63, 5954;
- 12gN. T. Patil, Z. Huo, Y. Yamamoto, J. Org. Chem. 2006, 71, 6991;
- 12hS. Kamijo, Y. Yamamoto, Angew. Chem. 2002, 114, 3364;
- 12iS. Kamijo, Y. Yamamoto, J. Org. Chem. 2003, 68, 4764;
- 12jC. Wang, J. A. Tunge, Org. Lett. 2006, 8, 3211;
- 12kH. Nakamura, H. Shibata, Y. Yamamoto, Tetrahedron Lett. 2000, 41, 2911;
- 12lY. S. Gyoung, J.-G. Shim, Y. Yamamoto, Tetrahedron Lett. 2000, 41, 4193;
- 12mS. Kamijo, T. Jin, Y. Yamamoto, J. Org. Chem. 2002, 67, 7413;
- 12nH. Nakamura, J.-G. Shim, Y. Yamamoto, J. Am. Chem. Soc. 1997, 119, 8113;
- 12oH. Nakamura, K. Aoyagi, J.-G. Shim, Y. Yamamoto, J. Am. Chem. Soc. 2001, 123, 372;
- 12pO. A. Wallner, K. J. Szabo, J. Org. Chem. 2003, 68, 2934;
- 12qM. Jeganmohan, M. Shanmugasundaram, C.-H. Cheng, Org. Lett. 2003, 5, 881;
- 12rM. Jeganmohan, M. Shanmugasundaram, C.-H. Cheng, J. Org. Chem. 2004, 69, 4053;
- 12sJ.-G. Shim, H. Nakamura, Y. Yamamoto, J. Org. Chem. 1998, 63, 8470;
- 12tC. Wang, J. A. Tunge, Org. Lett. 2005, 7, 2137;
- 12uN. T. Patil, Z. Huo, Y. Yamamoto, J. Org. Chem. 2006, 71, 2503;
- 12vM. Meguro, Y. Yamamoto, J. Org. Chem. 1999, 64, 694;
- 12wJ.-G. Shim, J. C. Park, C. S. Cho, S. C. Shim, Y. Yamamoto, Chem. Commun. 2002, 852;
- 12xH. Nakamura, H. Iwama, I. Masateru, Y. Yamamoto, J. Am. Chem. Soc. 1999, 121, 10850;
- 12yS. R. Waetzig, D. K. Rayabarapu, J. D. Weaver, J. A. Tunge, Angew. Chem. 2006, 118, 5099;
- 12zS. C. George, S. Thulasi, S. Anas, K. V. Radhakrishnan, Y. Yamamoto, Org. Lett. 2011, 13, 4984.
- 13J. Streuff, D. E. White, S. C. Virgil, B. M. Stoltz, Nat. Chem. 2010, 2, 192.
- 14
- 14aW. Hieber, F. Leutert, Naturwissenschaften 1931, 19, 360;
- 14bW. Hieber, F. Leutert, Ber. Dtsch. Chem. Ges. 1931, 64, 2832.
- 15For further details, see the Supporting Information.
- 16
- 16aM. S. Holzwarth, W. Frey, B. Plietker, Chem. Commun. 2011, 47, 11113;
- 16bA. P. Dieskau, B. Plietker, Org. Lett. 2011, 13, 5544.
- 17
- 17aG. A. Grasa, M. S. Viciu, J. Huang, S. P. Nolan, J. Org. Chem. 2001, 66, 7729;
- 17bH. T. Dieck, J. Dietrich, Chem. Ber. 1984, 117, 694;
- 17cW. Huang, J. Guo, Y. Xiao, M. Zhu, G. Zou, J. Tang, Tetrahedron 2005, 61, 9783.