Fe-Catalyzed Multicomponent Reactions: The Regioselective Alkoxy Allylation of Activated Olefins and its Application in Sequential Fe Catalysis
Dipl.-Chem. Dipl.-Ing. André P. Dieskau
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Search for more papers by this authorDipl.-Chem. Michael S. Holzwarth
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Search for more papers by this authorCorresponding Author
Prof. Dr. Bernd Plietker
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285Search for more papers by this authorDipl.-Chem. Dipl.-Ing. André P. Dieskau
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Search for more papers by this authorDipl.-Chem. Michael S. Holzwarth
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Search for more papers by this authorCorresponding Author
Prof. Dr. Bernd Plietker
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany), Fax: (+49) 711-685 64285Search for more papers by this authorGraphical Abstract
Iron adds it: Allylic carbonates react with various activated olefins in an Fe-catalyzed decarboxylative alkoxy allylation to afford densely substituted products in good yields and with high regioselectivities under mild conditions (see scheme). The robustness of the catalytic system is demonstrated by the first Fe-catalyzed alkoxy allylation allylic sulfenylation and three-component coupling sequence.
Abstract
We present herein a versatile and broadly applicable Fe-catalyzed regioselective alkoxy allylation of activated double bonds. Substituted allylic carbonates are converted into the corresponding σ-enyl Fe complexes by reaction with Bu4N[Fe(CO)3(NO)] (TBAFe) at 30 °C. The liberated alkoxide adds to an activated double bond with the generation of a C-nucleophile, which is trapped by the σ-enyl Fe complex in a regioselective manner. Alternatively, the alkoxide acts as a base in deprotonating an external pronucleophile, which undergoes Michael addition. The method is characterized by a broad functional group tolerance, mild reaction conditions, low catalyst loadings, and high regioselectivities in favor of the ipso-substitution product.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
chem_201103009_sm_miscellaneous_information.pdf2.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1The challenge of adjacent quaternary carbon centers in natural product synthesis:
- 1aE. A. Peterson, L. E. Overman, Proc. Natl. Acad. Sci. USA 2004, 101, 11943; the stereoselective construction of quaternary carbon centers:
- 1bM. Shimizu, Angew. Chem. 2011, 123, 6122;
10.1002/ange.201101720 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 5998;
- 1cK. Fuji, Chem. Rev. 1993, 93, 2037;
- 1dE. J. Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 2092;
10.1002/(SICI)1521-3757(19980803)110:15<2092::AID-ANGE2092>3.0.CO;2-M Google ScholarAngew. Chem. Int. Ed. 1998, 37, 388.10.1002/(SICI)1521-3773(19980302)37:4<388::AID-ANIE388>3.0.CO;2-V PubMedWeb of Science®Google Scholar
- 2For Pd-catalyzed allylic substitutions, see:
- 2aB. M. Trost, C. Lee, in Catalytic Asymmetric Synthesis, 2nd ed. ), Wiley-VCH, New York, 2000, 593;
10.1002/0471721506.ch19 Google Scholar
- 2bA. Pfaltz, M. Lautens, in Comprehensive Asymmetric Catalysis (Eds.: ), Springer, Heidelberg, 1999, 833;
- 2cZ. Lu, S. Ma, Angew. Chem. 2008, 120, 264;
10.1002/ange.200605113 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 258;
- 2dB. M. Trost, J. Org. Chem. 2004, 69, 5813;
- 2eB. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921;
- 2fT. Graening, H.-G. Schmalz, Angew. Chem. 2003, 115, 2684;
10.1002/ange.200301644 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 2580;
- 2gG. Helmchen, J. Organomet. Chem. 1999, 576, 203;
- 2hB. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395.
- 3
- 3aB. M. Trost, Y. Zhang, J. Am. Chem. Soc. 2007, 129, 14548;
- 3bA. V. Malkov, L. Gouriou, G. C. Lloyd-Jones, I. Starý, V. Langer, P. Spoor, V. Vinader, P. Kočovský, Chem. Eur. J. 2006, 12, 6910;
- 3cG. C. Lloyd-Jones, S. W. Krska, D. L. Hughes, L. Gouriou, V. D. Bonnet, K. Jack, Y. Sun, R. A. Reamer, J. Am. Chem. Soc. 2004, 126, 702;
- 3dB. M. Trost, K. Dogra, I. Hachiya, T. Emura, D. L. Hughes, S. Krska, R. A. Reamer, M. Palucki, N. Yasuda, P. J. Reider, Angew. Chem. 2002, 114, 2009;
10.1002/1521-3757(20020603)114:11<2009::AID-ANGE2009>3.0.CO;2-C Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1929;10.1002/1521-3773(20020603)41:11<1929::AID-ANIE1929>3.0.CO;2-O CASPubMedWeb of Science®Google Scholar
- 3eF. Glorius, A. Pfaltz, Org. Lett. 1999, 1, 141.
- 4
- 4aN. Kanbayashi, K. Onitsuka, Angew. Chem. 2011, 123, 5303;
10.1002/ange.201101078 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 5197;
- 4bN. Kanbayashi, K. Onitsuka, J. Am. Chem. Soc. 2010, 132, 1206;
- 4cM. Kawatsura, F. Ata, S. Wada, S. Hayase, H. Unob, T. Itoh, Chem. Commun. 2007, 298;
- 4dM. Kawatsura, F. Ata, S. Hayase, T. Itoh, Chem. Commun. 2007, 4283;
- 4eC. Bruneau, J.-L. Renaud, B. Demerseman, Chem. Eur. J. 2006, 12, 5178;
- 4fI. Fernandez, R. Hermatschweiler, P. S. Pregosin, A. Albinati, S. Rizzato, Organometallics 2006, 25, 323;
- 4gR. Hermatschweiler, I. Fernandez, F. Breher, P. S. Pregosin, L. F. Veiros, M. J. Calhorda, Angew. Chem. 2005, 117, 4471;
10.1002/ange.200500967 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 4397;
- 4hM. D. Mbaye, B. Demerseman, J.-L. Renaud, L. Toupet, C. Bruneau, Angew. Chem. 2003, 115, 5220;
10.1002/ange.200352257 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 5066;
- 4iB. M. Trost, P. L. Fraisse, Z. T. Ball, Angew. Chem. 2002, 114, 1101;
10.1002/1521-3757(20020315)114:6<1101::AID-ANGE1101>3.0.CO;2-2 Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1059;10.1002/1521-3773(20020315)41:6<1059::AID-ANIE1059>3.0.CO;2-5 CASPubMedWeb of Science®Google Scholar
- 4jY. Morisaki, T. Kondo, T.-A. Misudo, Organometallics 1999, 18, 4742.
- 5
- 5aM. Gärtner, S. Mader, K. Seehafer, G. Helmchen, J. Am. Chem. Soc. 2011, 133, 2072;
- 5bS. Ueno, J. F. Hartwig, Angew. Chem. 2008, 120, 1954;
10.1002/ange.200705267 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 1928;
- 5cS. Spiess, C. Welter, G. Franck, J.-P. Taquet, G. Helmchen, Angew. Chem. 2008, 120, 7764;
10.1002/ange.200802480 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 7652;
- 5dG. Helmchen, A. Dahnz, P. Dübon, M. Schelwies, R. Weihofen, Chem. Commun. 2007, 675;
- 5eD. Markovic, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 11680;
- 5fY. Yamashita, A. Gopalarathnam, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7508;
- 5gD. J. Weix, J. F. Hartwig, J. Am. Chem. Soc. 2007, 129, 7720;
- 5hM. J. Pouy, A. Leitner, D. J. Weix, S. Ueno, J. F. Hartwig, Org. Lett. 2007, 9, 3949;
- 5iS. Shekhar, B. Trantow, A. Leitner, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 11770;
- 5jR. Takeuchi, S. Kezuka, Synthesis 2006, 3349.
- 6
- 6aD. K. Leahy, P. A. Evans, in Modern Rhodium-Catalyzed Organic Reactions (Ed.: ), Wiley-VCH, Weinheim, 2005, 191;
- 6bF. Menard, T. M. Chapman, C. Dockendorff, M. Lautens, Org. Lett. 2006, 8, 4569;
- 6cB. A. Ashfeld, K. A. Miller, A. J. Smith, K. Tran, S. F. Martin, Org. Lett. 2005, 7, 1661;
- 6dB. A. Ashfeld, K. Miller, S. F. Martin, Org. Lett. 2004, 6, 1321;
- 6eP. A. Evans, J. E. Robinson, K. K. Moffett, Org. Lett. 2001, 3, 3269;
- 6fP. A. Evans, L. J. Kennedy, Org. Lett. 2000, 2, 2213;
- 6gP. A. Evans, D. K. Leahy, J. Am. Chem. Soc. 2000, 122, 5012;
- 6hP. A. Evans, J. D. Nelson, J. Am. Chem. Soc. 1998, 120, 5581.
- 7
- 7aM. Jegelka, B. Plietker, Chem. Eur. J. 2011, 17, 10417;
- 7bM. Holzwarth, A. Dieskau, M. Tabassam, B. Plietker, Angew. Chem. 2009, 121, 7387;
10.1002/ange.200901930 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 7251;
- 7cM. Jegelka, B. Plietker, Org. Lett. 2009, 11, 3462;
- 7dB. Plietker, A. Dieskau, K. Möws, A. Jatsch, Angew. Chem. 2008, 120, 204;
10.1002/ange.200703874 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 198;
- 7eB. Plietker, Angew. Chem. 2006, 118, 6200;
10.1002/ange.200602261 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 6053;
- 7fB. Plietker, Angew. Chem. 2006, 118, 1497;
10.1002/ange.200503274 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 1469;
- 7gJ. L. Roustan, J. Y. Merour, F. Houlihan, Tetrahedron Lett. 1979, 20, 3721;
- 7hY. Xu, B. Zhou, J. Org. Chem. 1987, 52, 974;
- 7iB. Zhou, Y. Xu, J. Org. Chem. 1988, 53, 4421.
- 8For recent reviews on Fe catalysis, see:
- 8aB. Plietker (Ed.), Advances in Sustainable Metal Catalysis: Iron Catalysis (Topics in Organometallic Chemistry), Springer, Heidelberg, 2011;
- 8bB. Plietker (Ed.), Iron Catalysis in Organic Synthesis, Wiley-VCH, Weinheim, 2008;
10.1002/9783527623273 Google Scholar
- 8cA. Correa, O. García Manchano, C. Bolm, Chem. Soc. Rev. 2008, 37, 1108;
- 8dC. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217;
- 8eA. Dieskau, B. Plietker, Eur. J. Org. Chem. 2009, 775;
- 8fS. Enthaler, K. Junge, M. Beller, Angew. Chem. 2008, 120, 3363;
10.1002/ange.200800012 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 3317.
- 9Selected examples of Fe-catalyzed transformations:
- 9aW. M. Czaplik, M. Mayer, A. Jacobi von Wangelin, Angew. Chem. 2009, 121, 616; Angew. Chem. Int. Ed. 2009, 48, 607;
- 9bM. Carril, A. Correa, C. Bolm, Angew. Chem. 2008, 120, 4940;
10.1002/ange.200801539 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 4862;
- 9cG. Cahiez, V. Habiak, C. Duplais, A. Moyeux, Angew. Chem. 2007, 119, 4442;
10.1002/ange.200700742 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 4364;
- 9dL. K. Ottesen, F. Ek, R. Olsson, Org. Lett. 2006, 8, 1771;
- 9eR. B. Bedford, M. Betham, D. W. Bruce, A. A. Danopoulos, R. M. Frost, M. Hird, J. Org. Chem. 2006, 71, 1104;
- 9fB. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, J. Org. Chem. 2004, 69, 3943;
- 9gM. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 3686;
- 9hC. Duplais, F. Bures, I. Sapountzis, T. J. Korn, G. Cahiez, P. Knochel, Angew. Chem. 2004, 116, 3028;
10.1002/ange.200453696 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2968;
- 9iT. Nagano, T. Hayashi, Org. Lett. 2004, 6, 1297;
- 9jA. Fürstner, A. Leitner, M. Mendez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856;
- 9kM. Tamura, J. J. Kochi, J. Am. Chem. Soc. 1971, 93, 1487;
- 9lA. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 8773;
- 9mC. P. Casey, H. Guan, J. Am. Chem. Soc. 2007, 129, 5816;
- 9nC. P. Casey, H. Guan, J. Am. Chem. Soc. 2009, 131, 2499;
- 9oS. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem. Soc. 2004, 126, 13794;
- 9pJ. Y. Wu, B. Moreau, T. Ritter, J. Am. Chem. Soc. 2009, 131, 12915;
- 9qN. S. Shaikh, S. Enthaler, K. Junge, M. Beller, Angew. Chem. 2008, 120, 2531;
10.1002/ange.200705624 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 2497.
- 10For TBAFe-catalyzed decarboxylative etherification of allylic carbonates, see: R. Trivedi, J. A. Tunge, Org. Lett. 2009, 11, 5650.
- 11H. Nakamura, M. Sekido, M. Ito, Y. Yamamoto, J. Am. Chem. Soc. 1998, 120, 6838.
- 12For an excellent review on Pd-catalyzed cascade reactions of highly activated olefins, see:
- 12aN. T. Patil, Y. Yamamoto, Synlett 2007, 13, 1994;
- 12bR. L. Xie, J. R. Hauske, Tetrahedron Lett. 2000, 41, 10167;
- 12cM. Sekido, K. Aoyagi, H. Nakamura, C. Kabuto, Y. Yamamoto, J. Org. Chem. 2001, 66, 7142;
- 12dJ.-G. Shim, Y. Yamamoto, J. Org. Chem. 1998, 63, 3067;
- 12eK. Aoyagi, H. Nakamura, Y. Yamamoto, J. Org. Chem. 2002, 67, 5977;
- 12fN. T. Patil, Z. Huo, Y. Yamamoto, Tetrahedron 2007, 63, 5954;
- 12gN. T. Patil, Z. Huo, Y. Yamamoto, J. Org. Chem. 2006, 71, 6991;
- 12hS. Kamijo, Y. Yamamoto, Angew. Chem. 2002, 114, 3364;
10.1002/1521-3757(20020902)114:17<3364::AID-ANGE3364>3.0.CO;2-Z Google ScholarAngew. Chem. Int. Ed. 2002, 41, 3230;10.1002/1521-3773(20020902)41:17<3230::AID-ANIE3230>3.0.CO;2-W CASPubMedWeb of Science®Google Scholar
- 12iS. Kamijo, Y. Yamamoto, J. Org. Chem. 2003, 68, 4764;
- 12jC. Wang, J. A. Tunge, Org. Lett. 2006, 8, 3211;
- 12kH. Nakamura, H. Shibata, Y. Yamamoto, Tetrahedron Lett. 2000, 41, 2911;
- 12lY. S. Gyoung, J.-G. Shim, Y. Yamamoto, Tetrahedron Lett. 2000, 41, 4193;
- 12mS. Kamijo, T. Jin, Y. Yamamoto, J. Org. Chem. 2002, 67, 7413;
- 12nH. Nakamura, J.-G. Shim, Y. Yamamoto, J. Am. Chem. Soc. 1997, 119, 8113;
- 12oH. Nakamura, K. Aoyagi, J.-G. Shim, Y. Yamamoto, J. Am. Chem. Soc. 2001, 123, 372;
- 12pO. A. Wallner, K. J. Szabo, J. Org. Chem. 2003, 68, 2934;
- 12qM. Jeganmohan, M. Shanmugasundaram, C.-H. Cheng, Org. Lett. 2003, 5, 881;
- 12rM. Jeganmohan, M. Shanmugasundaram, C.-H. Cheng, J. Org. Chem. 2004, 69, 4053;
- 12sJ.-G. Shim, H. Nakamura, Y. Yamamoto, J. Org. Chem. 1998, 63, 8470;
- 12tC. Wang, J. A. Tunge, Org. Lett. 2005, 7, 2137;
- 12uN. T. Patil, Z. Huo, Y. Yamamoto, J. Org. Chem. 2006, 71, 2503;
- 12vM. Meguro, Y. Yamamoto, J. Org. Chem. 1999, 64, 694;
- 12wJ.-G. Shim, J. C. Park, C. S. Cho, S. C. Shim, Y. Yamamoto, Chem. Commun. 2002, 852;
- 12xH. Nakamura, H. Iwama, I. Masateru, Y. Yamamoto, J. Am. Chem. Soc. 1999, 121, 10850;
- 12yS. R. Waetzig, D. K. Rayabarapu, J. D. Weaver, J. A. Tunge, Angew. Chem. 2006, 118, 5099;
10.1002/ange.200600721 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 4977;
- 12zS. C. George, S. Thulasi, S. Anas, K. V. Radhakrishnan, Y. Yamamoto, Org. Lett. 2011, 13, 4984.
- 13J. Streuff, D. E. White, S. C. Virgil, B. M. Stoltz, Nat. Chem. 2010, 2, 192.
- 14
- 14aW. Hieber, F. Leutert, Naturwissenschaften 1931, 19, 360;
- 14bW. Hieber, F. Leutert, Ber. Dtsch. Chem. Ges. 1931, 64, 2832.
- 15For further details, see the Supporting Information.
- 16
- 16aM. S. Holzwarth, W. Frey, B. Plietker, Chem. Commun. 2011, 47, 11113;
- 16bA. P. Dieskau, B. Plietker, Org. Lett. 2011, 13, 5544.
- 17
- 17aG. A. Grasa, M. S. Viciu, J. Huang, S. P. Nolan, J. Org. Chem. 2001, 66, 7729;
- 17bH. T. Dieck, J. Dietrich, Chem. Ber. 1984, 117, 694;
- 17cW. Huang, J. Guo, Y. Xiao, M. Zhu, G. Zou, J. Tang, Tetrahedron 2005, 61, 9783.