Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory
Corresponding Author
Prof. Dr. Stefan Grimme
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstr. 4, 53115 Bonn (Germany)
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstr. 4, 53115 Bonn (Germany)Search for more papers by this authorCorresponding Author
Prof. Dr. Stefan Grimme
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstr. 4, 53115 Bonn (Germany)
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstr. 4, 53115 Bonn (Germany)Search for more papers by this authorGraphical Abstract
Unprecedented accuracy for computed association free enthalpies of supramolecular host–guest complexes (some examples are shown here) in solution has been achieved by a combination of high-level quantum chemical procedures. The approach is quite general, includes all basic physical effects quantitatively and requires no special empirical adjustments.
Abstract
The equilibrium association free enthalpies ΔGa for typical supramolecular complexes in solution are calculated by ab initio quantum chemical methods. Ten neutral and three positively charged complexes with experimental ΔGa values in the range 0 to −21 kcal mol−1 (on average −6 kcal mol−1) are investigated. The theoretical approach employs a (nondynamic) single-structure model, but computes the various energy terms accurately without any special empirical adjustments. Dispersion corrected density functional theory (DFT-D3) with extended basis sets (triple-ζ and quadruple-ζ quality) is used to determine structures and gas-phase interaction energies (ΔE), the COSMO-RS continuum solvation model (based on DFT data) provides solvation free enthalpies and the remaining ro-vibrational enthalpic/entropic contributions are obtained from harmonic frequency calculations. Low-lying vibrational modes are treated by a free-rotor approximation. The accurate account of London dispersion interactions is mandatory with contributions in the range −5 to −60 kcal mol−1 (up to 200 % of ΔE). Inclusion of three-body dispersion effects improves the results considerably. A semilocal (TPSS) and a hybrid density functional (PW6B95) have been tested. Although the ΔGa values result as a sum of individually large terms with opposite sign (ΔE vs. solvation and entropy change), the approach provides unprecedented accuracy for ΔGa values with errors of only 2 kcal mol−1 on average. Relative affinities for different guests inside the same host are always obtained correctly. The procedure is suggested as a predictive tool in supramolecular chemistry and can be applied routinely to semirigid systems with 300–400 atoms. The various contributions to binding and enthalpy–entropy compensations are discussed.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
chem_201200497_sm_miscellaneous_information.pdf317.8 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. M. Lehn, Supramolecular Chemistry, Concepts and Perspectives, VCH, Weinheim, 1995.
10.1002/3527607439 Google Scholar
- 2J. L. Atwood, J. W. Steed, Supramolecular Chemistry. Wiley, 2009.
- 3K. S. Kim, P. Tarakeshwar, J. Y. Lee, Chem. Rev. 2000, 100, 4145.
- 4P. Hobza, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 3.
- 5E. G. Hohenstein, C. D. Sherrill, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 304.
- 6E. A. Meyer, R. K. Castellano, F. Diederich, Angew. Chem. 2003, 115, 1244;
10.1002/ange.200390290 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1210.
- 7H.-J. Schneider, Angew. Chem. 2009, 121, 3982;
10.1002/ange.200802947 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 3924.
- 8J. Antony, S. Grimme, D. G. Liakos, F. Neese, J. Phys. Chem. A 2011, 115, 11210.
- 9S. C. Wang, Phys. Z. 1927, 28, 663.
- 10F. London, Z. Phys. 1930, 63, 245.
- 11S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 12L. A. Burns, A. Vazquez-Mayagoitia, B. G. Sumpter, C. D. Sherrill, J. Chem. Phys. 2011, 134, 084107.
- 13L. Goerigk, H. Kruse, S. Grimme, ChemPhysChem 2011, 12, 3421.
- 14L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670.
- 15B. Tidor, M. Karplus, J. Mol. Biol. 1994, 238, 405.
- 16K. N. Houk, S. Menzer, S. P. Newton, F. M. Raymo, J. F. Stoddart, D. J. Williams, J. Am. Chem. Soc. 1999, 121, 1479.
- 17S. Moghaddam, C. Yang, M. Rekharsky, Y. H. Ko, K. Kim, Y. Inoue, M. K. Gilson, J. Am. Chem. Soc. 2011, 133, 3570.
- 18C. D. Sherrill, B. G. Sumpter, M. O. Sinnokrot, M. S. Marshall, E. G. Hohenstein, R. C. Walker, I. R. Gould, J. Comput. Chem. 2009, 30, 2187.
- 19M. Kamieth, U. Burkert, P. S. Corbin, S. J. Dell, S. C. Zimmerman, F.-G. Klärner, Eur. J. Org. Chem. 1999, 2741.
10.1002/(SICI)1099-0690(199911)1999:11<2741::AID-EJOC2741>3.0.CO;2-K CASWeb of Science®Google Scholar
- 20J. Graton, J.-Y. Le Questel, B. Legouin, P. Uriac, P. van de Weghe, D. Jacquemin, Chem. Phys. Lett. 2012, 522, 11.
- 21C. Mück-Lichtenfeld, S. Grimme, L. Kobryn, A. Sygula, Phys. Chem. Chem. Phys. 2010, 12, 7091.
- 22C. Allott, H. Adams, P. L. Bernad Jr., C. A. Hunter, C. Rotger, J. A. Thomas, Chem. Commun. 1998, 2449.
- 23W. L. Mock, N.-Y. Shih, J. Am. Chem. Soc. 1989, 111, 2697.
- 24E. E. Tucker, S. D. Christian, J. Phys. Chem. 1979, 83, 426.
- 25C. D. Sherrill, Rev. Comput. Chem. 2009, 26, 1.
- 26M. O. Sinnokrot, E. F. Valeev, C. D. Sherrill, J. Am. Chem. Soc. 2002, 124, 10887.
- 27P. Jurečka, J. Šponer, J. Černý, P. Hobza, Phys. Chem. Chem. Phys. 2006, 8, 1985.
- 28T. Takatani, E. G. Hohenstein, M. Malagoli, M. S. Marshall, C. D. Sherrill, J. Chem. Phys. 2010, 132, 144104.
- 29D. Benitez, E. Tkatchouk, I. Yoon, J. F. Stoddart, W. A. Goddard III, J. Am. Chem. Soc. 2008, 130, 14928.
- 30A. Klamt, J. Phys. Chem. 1995, 99, 2224.
- 31F. Eckert, A. Klamt, AIChE J. 2002, 48, 369.
- 32F. Eckert, A. Klamt, COSMOtherm, Version C2.1, Release 01.11; COSMOlogic GmbH & Co. KG, Leverkusen (Germany), 2010.
- 33J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
- 34A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
- 35J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
- 36A. Klamt, B. Mennucci, J. Tomasi, V. Barone, C. Curutchet, M. Orozco, F. Luque, Acc. Chem. Res. 2009, 42, 489.
- 37C. J. Cramer, Essentials of Compuational Chemistry, Wiley, New York, 2002.
- 38C. J. Cramer, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 760.
- 39C. J. Cramer, D. G. Truhlar, Acc. Chem. Res. 2009, 42, 493.
- 40R. Franke, B. Hannebauer, Phys. Chem. Chem. Phys. 2011, 13, 21344.
- 41S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 42O. A. Vydrov, T. Van Voorhis, J. Chem. Phys. 2010, 133, 244103.
- 43W. Hujo, S. Grimme, J. Chem. Theory Comput. 2011, 7, 3866.
- 44M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, B. I. Lundqvist, Phys. Rev. Lett. 2004, 92, 246401.
- 45J. Gräfenstein, D. Cremer, J. Chem. Phys. 2009, 130, 124105.
- 46A. Krishtal, D. Geldorf, K. Vanommeslaeghe, C. VanAlsenoy, P. Geerlings, J. Chem. Theory Comput. 2012, 8, 125.
- 47A. D. Becke, E. R. Johnson, J. Chem. Phys. 2005, 122, 154104.
- 48E. R. Johnson, A. D. Becke, J. Chem. Phys. 2005, 123, 024101.
- 49S. Grimme, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 211.
- 50J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett. 2003, 91, 146401.
- 51Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656.
- 52M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B 1998, 58, 7260–7268.
- 53T. Frauenheim, DFTB+ (Density Functional based Tight Binding) 2008, see http://www.dftb.org/.
- 54J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173.
- 55J. J. P. Stewart, Stewart Computational Chemistry, Version 11.038 L, see http://OpenMOPAC.net.
- 56Y. Zhao, D. G. Truhlar, Phys. Chem. Chem. Phys. 2008, 10, 2813.
- 57F. G. Klärner, J. Panitzky, D. Preda, L. T. Scott, J. Mol. Model. 2000, 6, 318.
- 58F. G. Klärner, B. Kahlert, Acc. Chem. Res. 2003, 36, 919.
- 59C. E. Chang, M. K. Gilson, J. Am. Chem. Soc. 2004, 126, 13156.
- 60S. P. Brown, T. Schaller, U. P. Seelbach, F. Koziol, C. Ochsenfeld, F. G. Klärner, H. W. Spiess, Angew. Chem. 2001, 113, 740; Angew. Chem. Int. Ed. 2001, 40, 717.
- 61M. Parac, M. Etinski, S. Grimme, J. Chem. Theory Comput. 2005, 1, 1110.
- 62T. Yu, J. Zheng, D. G. Truhlar, Phys. Chem. Chem. Phys. 2012, 14, 482.
- 63W. Chen, C.-E. Chang, M. K. Gilson, Biophys. J. 2004, 87, 3035.
- 64C.-E. Chang, M. J. Potter, K. Gilson, J. Phys. Chem. B 2003, 107, 1048.
- 65T. Wiegand, H. Eckert, O. Ekkert, R. Fröhlich, G. Kehr, G. Erker, S. Grimme, J. Am. Chem. Soc. 2012, 134, 4236.
- 66B. M. Axilrod, E. Teller, J. Chem. Phys. 1943, 11, 299.
- 67J. Mutto, Proc. Phys. Math. Soc. Japan 1943, 17, 629.
- 68See http://www.thch.uni-bonn.de/.
- 69J. Řezáč, K. E. Riley, P. Hobza, J. Chem. Theory Comput. 2011, 7, 2427.
- 70A. Tkatchenko, O. A. von Lilienfeld, Phys. Rev. B 2008, 78, 045116.
- 71O. A. von Lilienfeld, A. Tkatchenko, J. Chem. Phys. 2010, 132, 234109.
- 72Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- 73L. Goerigk, S. Grimme, J. Chem. Theory Comput. 2011, 7, 291.
- 74F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 75F. Weigend, F. Furche, R. Ahlrichs, J. Chem. Phys. 2003, 119, 12753.
- 76T. H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007.
- 77D. Rappoport, F. Furche, J. Chem. Phys. 2010, 133, 134105.
- 78M. Murata, S. Maeda, Y. Morinaka, Y. Murata, K. Komatsu, J. Am. Chem. Soc. 2008, 130, 15800.
- 79R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165.
- 80K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283.
- 81K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119.
- 82P. Y. Ayala, H. B. Schlegel, J. Chem. Phys. 1998, 108, 2314.
- 83J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
- 84R. F. Ribeiro, A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2011, 115, 14556.
- 85J. Řezáč, P. Hobza, J. Chem. Theory Comput. 2012, 8, 141.
- 86M. K. Gilson, K. K. Irikura, J. Phys. Chem. B 2010, 114, 16304.
- 87A. Choutko, W. F. van Gunsteren, P. H. Hünenberger, ChemPhysChem 2011, 12, 3214.