Oxo–Group-14-Element Bond Formation in Binuclear Uranium(V) Pacman Complexes
Guy M. Jones
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743
Search for more papers by this authorCorresponding Author
Prof. Polly L. Arnold
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743Search for more papers by this authorCorresponding Author
Dr. Jason B. Love
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743Search for more papers by this authorGuy M. Jones
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743
Search for more papers by this authorCorresponding Author
Prof. Polly L. Arnold
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743Search for more papers by this authorCorresponding Author
Dr. Jason B. Love
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743
EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh, EH9 3 JJ (U.K.), Fax: (+44) 131-6504743Search for more papers by this authorGraphical Abstract
Keeping it in the carbon family: Simple and versatile metalation and exchange reactions lead to a new family of binuclear uranium(V)–oxo complexes that are functionalised by the Group 14 elements C, Si, and Sn. These Pacman-shaped compounds display distinct UO single and multiple bonding patterns and exhibit unique stability against oxidation (see scheme).
Abstract
Simple and versatile routes to the functionalization of uranyl-derived UV–oxo groups are presented. The oxo-lithiated, binuclear uranium(V)–oxo complexes [{(py)3LiOUO}2(L)] and [{(py)3LiOUO}(OUOSiMe3)(L)] were prepared by the direct combination of the uranyl(VI) silylamide “ate” complex [Li(py)2][(OUO)(N”)3] (N”=N(SiMe3)2) with the polypyrrolic macrocycle H4L or the mononuclear uranyl (VI) Pacman complex [UO2(py)(H2L)], respectively. These oxo-metalated complexes display distinct UO single and multiple bonding patterns and an axial/equatorial arrangement of oxo ligands. Their ready availability allows the direct functionalization of the uranyl oxo group leading to the binuclear uranium(V) oxo–stannylated complexes [{(R3Sn)OUO}2(L)] (R=nBu, Ph), which represent rare examples of mixed uranium/tin complexes. Also, uranium–oxo-group exchange occurred in reactions with [TiCl(OiPr)3] to form U-OC bonds [{(py)3LiOUO}(OUOiPr)(L)] and [(iPrOUO)2(L)]. Overall, these represent the first family of uranium(V) complexes that are oxo-functionalised by Group 14 elements.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem_201301067_sm_miscellaneous_information.pdf1.1 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. B. Jones, A. J. Gaunt, Chem. Rev. 2013, 113, 1137–1198; C. R. Graves, J. L. Kiplinger, Chem. Commun. 2009, 3831–3853.
- 2H. Steele, R. J. Taylor, Inorg. Chem. 2007, 46, 6311–6318; V. Mougel, B. Biswas, J. Pecaut, M. Mazzanti, Chem. Commun. 2010, 46, 8648–8650.
- 3P. L. Arnold, J. B. Love, D. Patel, Coord. Chem. Rev. 2009, 253, 1973–1978.
- 4R. G. Denning, J. Phys. Chem. A 2007, 111, 4125–4143.
- 5J.-C. Berthet, G. Siffredi, P. Thuéry, M. Ephritikhine, Chem. Commun. 2006, 3184–3186; L. Natrajan, F. Burdet, J. Pécaut, M. Mazzanti, J. Am. Chem. Soc. 2006, 128, 7152–7153; J.-C. Berthet, G. Siffredi, P. Thuéry, M. Ephritikhine, Dalton Trans. 2009, 3478–3494; V. Mougel, J. Pécaut, M. Mazzanti, Chem. Commun. 2012, 48, 868–870.
- 6P. L. Arnold, D. Patel, C. Wilson, J. B. Love, Nature 2008, 451, 315–317.
- 7P. L. Arnold, A.-F. Pécharman, E. Hollis, A. Yahia, L. Maron, S. Parsons, J. B. Love, Nat. Chem. 2010, 2, 1056–1061.
- 8P. L. Arnold, E. Hollis, F. J. White, N. Magnani, R. Caciuffo, J. B. Love, Angew. Chem. 2011, 123, 917–920; Angew. Chem. Int. Ed. 2011, 50, 887–890; P. L. Arnold, E. Hollis, G. S. Nichol, J. B. Love, J. C. Griveau, R. Caciuffo, N. Magnani, L. Maron, L. Castro, A. Yahia, S. O. Odoh, G. Schreckenbach, J. Am. Chem. Soc. 2013, 135, 3841.
- 9V. Mougel, L. Chatelain, J. Pécaut, R. Caciuffo, E. Colineau, J.-C. Griveau, M. Mazzanti, Nat. Chem. 2012, 4, 1011–1017.
- 10F. Burdet, J. Pécaut, M. Mazzanti, J. Am. Chem. Soc. 2006, 128, 16512–16513;
V. Mougel, P. Horeglad, G. Nocton, J. Pécaut, M. Mazzanti, Angew. Chem. 2009, 121, 8629–8632;
10.1002/ange.200903457 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 8477–8480; G. Nocton, P. Horeglad, V. Vetere, J. Pécaut, L. Dubois, P. Maldivi, N. M. Edelstein, M. Mazzanti, J. Am. Chem. Soc. 2009, 131, 495–508; L. Chatelain, V. Mougel, J. Pecaut, M. Mazzanti, Chem. Sci. 2012, 3, 1075–1079.
- 11P. L. Arnold, A.-F. Pécharman, J. B. Love, Angew. Chem. 2011, 123, 9628–9630;
10.1002/ange.201104359 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 9456–9458.
- 12J. L. Brown, G. Wu, T. W. Hayton, J. Am. Chem. Soc. 2010, 132, 7248–7249; D. D. Schnaars, G. Wu, T. W. Hayton, Inorg. Chem. 2011, 50, 4695–4697; D. D. Schnaars, G. Wu, T. W. Hayton, Inorg. Chem. 2011, 50, 9642–9649.
- 13S. C. Bart, C. Anthon, F. W. Heinemann, E. Bill, N. M. Edelstein, K. Meyer, J. Am. Chem. Soc. 2008, 130, 12536–12546; S. Fortier, J. L. Brown, N. Kaltsoyannis, G. Wu, T. W. Hayton, Inorg. Chem. 2012, 51, 1625–1633.
- 14D. S. J. Arney, C. J. Burns, J. Am. Chem. Soc. 1993, 115, 9840–9841; D. S. J. Arney, C. J. Burns, J. Am. Chem. Soc. 1995, 117, 9448–9460.
- 15B. Kosog, H. S. La Pierre, F. W. Heinemann, S. T. Liddle, K. Meyer, J. Am. Chem. Soc. 2012, 134, 5284–5289; K. W. Bagnall, J. G. H. du Preez, J. Chem. Soc. Chem. Commun. 1973, 820–821; J. F. de Wet, J. G. H. du Preez, J. Chem. Soc. Dalton Trans. 1978, 592–597.
- 16T. W. Hayton, Dalton Trans. 2010, 39, 1145–1158.
- 17P. L. Arnold, A. J. Blake, C. Wilson, J. B. Love, Inorg. Chem. 2004, 43, 8206–8208.
- 18P. L. Arnold, G. M. Jones, Q.-J. Pan, G. Schreckenbach, J. B. Love, Dalton Trans. 2012, 41, 6595–6597.
- 19P. L. Arnold, G. M. Jones, S. O. Odoh, G. Schreckenbach, N. Magnani, J. B. Love, Nat. Chem. 2012, 4, 221–227.
- 20G. M. Jones, P. L. Arnold, J. B. Love, Angew. Chem. Int. Ed. 2012, 51, 12584–12587.
- 21Q.-J. Pan, G. Schreckenbach, Inorg. Chem. 2010, 49, 6509–6517; Q.-J. Pan, G. A. Shamov, G. Schreckenbach, Chem. Eur. J. 2010, 16, 2282–2290.
- 22O. P. Lam, F. W. Heinemann, K. Meyer, Chem. Sci. 2011, 2, 1538–1547.
- 23C. J. Burns, D. L. Clark, R. J. Donohoe, P. B. Duval, B. L. Scott, C. D. Tait, Inorg. Chem. 2000, 39, 5464–5468.
- 24J. Ling, J. Qiu, G. E. Sigmon, M. Ward, J. E. S. Szymanowski, P. C. Burns, J. Am. Chem. Soc. 2010, 132, 13395–13402.
- 25M. Porchia, U. Casellato, F. Ossola, G. Rossetto, P. Zanella, R. Graziani, J. Chem. Soc. Chem. Commun. 1986, 1034–1035.
- 26P. L. Arnold, D. Patel, A. J. Blake, C. Wilson, J. B. Love, J. Am. Chem. Soc. 2006, 128, 9610–9611; C. L. Cahill, D. T. de Lill, M. Frisch, CrystEngComm 2007, 9, 15–26; A. N. Alsobrook, B. G. Hauser, J. T. Hupp, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Chem. Commun. 2010, 46, 9167–9169; Y. Yu, W. Zhan, T. E. Albrecht-Schmitt, Inorg. Chem. 2007, 46, 10214–10220; S. Wu, J. Ling, S. Wang, S. Skanthakumar, L. Soderholm, T. E. Albrecht-Schmitt, E. V. Alekseev, S. V. Krivovichev, W. Depmeier, Eur. J. Inorg. Chem. 2009, 2009, 4039–4042; P. Thuéry, Inorg. Chem. Commun. 2009, 12, 800–803; A. N. Alsobrook, E. V. Alekseev, W. Depmeier, T. E. Albrecht-Schmitt, Cryst. Growth Des. 2011, 11, 2358–2367; T. Tian, W. Yang, Q.-J. Pan, Z.-M. Sun, Inorg. Chem. 2012, 51, 11150–11154; W. Chen, H.-M. Yuan, J.-Y. Wang, Z.-Y. Liu, J.-J. Xu, M. Yang, J.-S. Chen, J. Am. Chem. Soc. 2003, 125, 9266–9267.
- 27F. A. Cotton, D. O. Marler, W. Schwotzer, Inorg. Chem. 1984, 23, 4211–4215.
- 28J.-C. Berthet, G. Siffredi, P. Thuéry, M. Ephritikhine, Eur. J. Inorg. Chem. 2007, 2007, 4017–4020.