Cp*CoIII-Catalyzed C2-Selective Addition of Indoles to Imines†
Tatsuhiko Yoshino
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206
Search for more papers by this authorHideya Ikemoto
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206
Search for more papers by this authorCorresponding Author
Dr. Shigeki Matsunaga
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206
ACT-C Japan Science and Technology Agency, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206Search for more papers by this authorCorresponding Author
Prof. Dr. Motomu Kanai
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206
ERATO, Kanai Life Science Catalysis Project, Japan Science and Technology Agency, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206Search for more papers by this authorTatsuhiko Yoshino
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206
Search for more papers by this authorHideya Ikemoto
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206
Search for more papers by this authorCorresponding Author
Dr. Shigeki Matsunaga
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206
ACT-C Japan Science and Technology Agency, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206Search for more papers by this authorCorresponding Author
Prof. Dr. Motomu Kanai
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206
ERATO, Kanai Life Science Catalysis Project, Japan Science and Technology Agency, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan), Fax: (+81) 3-5684-5206Search for more papers by this authorCp*=1,2,3,4,5-pentamethylcyclopentadienyl; Cp*CoIII=a CoIII complex with one Cp* ligand and other coordinating ligand(s), such as C6H6, a base (OAc), or a substrate (imine or a pyrimidine unit in indoles).
Graphical Abstract
Overriding innate reactivity: The utility of a CoIII catalyst to promote the C2-selective addition of indoles to imines was demonstrated. The CoIII catalyst completely changed the regioselectivity in comparison with simple Lewis acid catalyzed Friedel–Crafts C3-selective addition. High turnover number (TON) of the catalyst, up to 1.8×102 (with s/c=200; see scheme; s/c is the substrate/catalyst ratio), was achieved.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem_201301505_sm_miscellaneous_information.pdf3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Reviews:
- 1aG. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875;
- 1bS. Cacchi, G. Fabrizi, Chem. Rev. 2011, 111, PR 215;
- 1cD. F. Taber, P. K. Tirunahari, Tetrahedron 2011, 67, 7195.
- 2
- 2aS. Lakhdar, M. Westermaier, F. Terrier, R. Goumont, T. Boubaker, A. R. Ofial, H. Mayr, J. Org. Chem. 2006, 71, 9088; reviews on (asymmetric) Friedel–Crafts reactions of indoles:
- 2bM. Bandini, A. Melloni, A. Umani-Ronchi, Angew. Chem. 2004, 116, 560;
- 2cM. Bandini, A. Eichholzer, Angew. Chem. 2009, 121, 9786;
- 2dS.-L. You, Q. Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190;
- 2eG. Bartoli, G. Bencivenni, R. Dalpozzo, Chem. Soc. Rev. 2010, 39, 4449.
- 3
- 3aE. D. Cox, J. M. Cook, Chem. Rev. 1995, 95, 1797;
- 3bJ. Stöckigt, A. P. Antonchick, F. Wu, H. Waldmann, Angew. Chem. 2011, 123, 8692;
- 4
- 4aH. Çavdar, N. Saraçoglu, Tetrahedron 2005, 61, 2401; several asymmetric Friedel–Crafts reactions were reported:
- 4bD. A. Evans, K. R. Fandrick, Org. Lett. 2006, 8, 2249;
- 4cD. A. Evans, K. R. Fandrick, H.-J. Song, K. A. Scheidt, R. Xu, J. Am. Chem. Soc. 2007, 129, 10029;
- 4dG. Blay, I. Fernández, J. R. Pedro, C. Vila, Tetrahedron Lett. 2007, 48, 6731;
- 4eQ. Kang, X.-J. Zheng, S.-L. You, Chem. Eur. J. 2008, 14, 3539;
- 4fL. Hong, C. Liu, W. Sun, L. Wang, K, Wong, R. Wang, Org. Lett. 2009, 11, 2177.
- 5
- 5aD. A. Shirley, P. A. Roussel, J. Am. Chem. Soc. 1953, 75, 375;
- 5bR. J. Sundberg, H. F. Russell, J. Org. Chem. 1973, 38, 3324;
- 5cA. R. Katritzky, K. Akutagawa, Tetrahedron Lett. 1985, 26, 5935;
- 5dP. Gmeiner, J. Kraxner, B. Bollinger, Synthesis 1996, 1196; diastereoselective addition to chiral sulfinyl aldimines by lithiation:
- 5eL. Cheng, L. Liu, Y. Sui, D. Wang, Y.-J. Chen, Tetrahedron: Asymmetry 2007, 18, 1833; an indole-2-trifluoroborate salt was utilized for organocatalytic conjugated addition to an enal:
- 5fS. Lee, D. W. C. MacMillan, J. Am. Chem. Soc. 2007, 129, 15438.
- 6B. M. Trost, Science 1991, 254, 1471.
- 7P. A. Wender, B. L. Miller, Nature 2009, 460, 197.
- 8General reviews on CH bond functionalization:
- 8aV. Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731;
- 8bF. Kakiuchi, N. Chatani, Adv. Synth. Catal. 2003, 345, 1077;
- 8cK. Godula, D. Sames, Science 2006, 312, 67;
- 8dF. Kakiuchi, T. Kochi, Synthesis 2008, 3013;
- 8eL. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976;
- 8fD. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624;
- 8gT. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147;
- 8hN. Yoshikai, Synlett 2011, 1047 and references therein.
- 9Reviews for CH arylation of indoles:
- 9aE. M. Beck, M. J. Gaunt, in Topics in Current Chemistry, Vol. 292, Eds: , Springer, Berlin, 2010, pp. 85–121;
- 9bI. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173;
- 9cL. Joucla, L. Djakovitch, Adv. Synth. Catal. 2009, 351, 673 and also see reference [1b]. Selected examples of C2-selective arylation:
- 9dB. S. Lane, D. Sames, Org. Lett. 2004, 6, 2897;
- 9eX. Wang, B. S. Lane, D. Sames, J. Am. Chem. Soc. 2005, 127, 4996;
- 9fB. S. Lane, M. A. Brown, D. Sames, J. Am. Chem. Soc. 2005, 127, 8050;
- 9gN. R. Deprez, D. Kalyani, A. Krause, M. S. Sanford, J. Am. Chem. Soc. 2006, 128, 4972;
- 9hB. B. Touré, B. S. Lane, D. Sames, Org. Lett. 2006, 8, 1979;
- 9iD. R. Stuart, E. Villemure, K. Fagnou, J. Am. Chem. Soc. 2007, 129, 12072;
- 9jS.-D. Yang, C.-L. Sun, Z. Fang, B.-J. Li, Y.-Z. Li, Z.-J. Shi, Angew. Chem. 2008, 120, 1495;
- 9kR. J. Phipps, N. P. Grimster, M. J. Gaunt, J. Am. Chem. Soc. 2008, 130, 8172;
- 9lL. Ackermann, A. V. Lygin, Org. Lett. 2011, 13, 3332;
- 9mX. Qin, H. Liu, D. Qin, Q. Wu, J. You, D. Zhao, Q. Guo, X. Huang, J. Lan, Chem. Sci. 2013, 4, 1964.
- 10C2-selective oxidative Heck reactions of indoles:
- 10aE. Capito, J. M. Brown, A. Ricci, Chem. Commun. 2005, 1854;
- 10bN. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, Angew. Chem. 2005, 117, 3185;
- 10cA. Maehara, H. Tsurugi, T. Satoh, M. Miura, Org. Lett. 2008, 10, 1159;
- 10dA. García-Rubia, R. Gómez Arrayás, J. C. Carretero, Angew. Chem. 2009, 121, 6633;
- 10eA. García-Rubia, B. Urones, R. Gómez Arrayás, J. C. Carretero, Chem. Eur. J. 2010, 16, 9676; alkenylation by using alkynes:
- 10fD. J. Schipper, M. Hutchinson, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 6910;
- 10gZ. Ding, N. Yoshikai, Angew. Chem. 2012, 124, 4776;
- 10hS. Pan, N. Ryu, T. Shibata, J. Am. Chem. Soc. 2012, 134, 17474; alkylation by using alkyl halides:
- 10iL. Jiao, T. Bach, J. Am. Chem. Soc. 2011, 133, 12990;
- 10jL. Jiao, E. Herdtweck, T. Bach, J. Am. Chem. Soc. 2012, 134, 14563.
- 11B. Zhou, Y. Yang, S. Lin, Y. Li, Adv. Synth. Catal. 2013, 355, 360.
- 12Other reactions of indoles with polar reactants at the C2-position; acylation under oxidative conditions:
- 12aB. Zhou, Y. Yang, Y. Li, Chem. Commun. 2012, 48, 5163; with Ts-azide:
- 12bJ. Shi, B. Zhou, Y. Yang, Y. Li, Org. Biomol. Chem. 2012, 10, 8953.
- 13Part of our results disclosed in this manuscript were presented in the “4th Symposium on Molecular Activation” held at Kyushu University on Feb 1, 2013.
- 14Reviews on Cp*RhIII catalysis:
- 14aF. W. Patureau, J. Wencel-Delord, F. Glorius, Aldrichimica Acta 2012, 45, 31;
- 14bG. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651;
- 14cT. Satoh, M. Miura, Chem. Eur. J. 2010, 16, 11212; for related reports of Cp*RhIII-catalyzed addition of 2-phenylpiridines to imines, see;
- 14dA. S. Tsai, M. E. Tauchert, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2011, 133, 1248;
- 14eY. Li, B.-J. Li, W.-H. Wang, W.-P. Huang, X.-S. Zhang, K. Chen, Z.-J. Shi, Angew. Chem. 2011, 123, 2163;
- 14fM. E. Tauchert, C. D. Incarvito, A. L. Rheingold, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2012, 134, 1482;
- 14gY. Li, X.-S. Zhang, H. Li, W.-H. Wang, K. Chen, B.-J. Li, Z.-J. Shi, Chem. Sci. 2012, 3, 1634.
- 15T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai, Angew. Chem. 2013, 125, 2263;
- 16Review on the first-row transition-metal-catalyzed CH bond activation/CC bond formation, A. A. Kulkarni, O. Daugulis, Synthesis 2009, 4087.
- 17Low-valent cobalt catalysts have been intensively investigated for CH functionalization reactions. For leading examples, see:
- 17aK. Gao, P.-S. Lee, T. Fujita, N. Yoshikai, J. Am. Chem. Soc. 2010, 132, 12249;
- 17bK. Gao, N. Yoshikai, J. Am. Chem. Soc. 2011, 133, 400;
- 17cQ. Chen, L. Ilies, E. Nakamura, J. Am. Chem. Soc. 2011, 133, 428;
- 17dB. Li, Z.-H. Wu, Y.-F. Gu, C.-L. Sun, B.-Q. Wang, Z.-J. Shi, Angew. Chem. 2011, 123, 1141;
- 17eW. Song, L. Ackermann, Angew. Chem. 2012, 124, 8376;
- 17fT. Andou, Y. Saga, H. Komai, S. Matsunaga, M. Kanai, Angew. Chem. 2013, 125, 3295;
- 18
- 18aM. D. Varney, K. Appelt, V. Kalish, M. R. Reddy, J. Tatlock, C. L. Palmer, W. H. Romines, B.-W. Wu, L. Musick, J. Med. Chem. 1994, 37, 2274;
- 18bM. A. Cruces, C. Elorriaga, E. Fernandez-Alvarez, Eur. J. Med. Chem. 1991, 26, 33.
- 19Among other directing groups, the N,N-dimethylcarbamoyl group also gave the desired C2-functionalized products although the conversion was slightly lower than that with 1 a. The 2-pyridyl directing group had comparably good reactivity with the 2-pyrimidyl group, but the 2-pyrimidyl group was selected in this study because it is readily removable as demonstrated in Scheme 1.
- 202-Thiophenesulfonyl imine 2 a was utilized in the initial optimization studies instead of Ts-imines, because the 2-thiophenesulfonyl group in products can be readily removed with a Mg powder in MeOH. See reference [21].
- 21For leading examples demonstrating the synthetic utility of (2-thiophenesulfonyl)imines and related heteroarene–sulfonyl imines, see:
- 21aA. S. González, R. Gómez Arrayás, J. C. Carretero, Org. Lett. 2006, 8, 2977;
- 21bJ. Esquivias, R. Gómez Arrayás, J. C. Carretero, J. Am. Chem. Soc. 2007, 129, 1480;
- 21cH. Morimoto, G. Lu, N. Aoyama, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2007, 129, 9588;
- 21dS. Nakamura, H. Nakashima, H. Sugimoto, H. Sano, M. Hattori, N. Shibata, T. Toru, Chem. Eur. J. 2008, 14, 2145 and references therein. See also, ref. [10d,e].
- 22For example, applicable functional groups in 4,7-dihydroindoles in ref. [4] were limited, because 4,7-dihydroindoles were synthesized by Birch reduction.
- 23The H/D exchange experiment under Cp*CoIII catalysis was also performed in the presence of imine 2 a. Deuterium incorporation was not detected at the C3-position of both recovered 1 a and product 3 a. Deuterium incorporation was observed at C2- (41 % D) and C7-positions (37 % D) of recovered 1 a and the C7-position (38 % D) of product 3 a. The reason why the H/D exchange proceeded at the C7-position only in the presence of imine 2 a is not clear at the moment. Further studies are ongoing.