Cyclometalated Iridium(III) Complexes with Deoxyribose Substituents
Ayan Maity
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)
Search for more papers by this authorDr. Jung-Suk Choi
Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (USA)
Search for more papers by this authorDr. Thomas S. Teets
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (USA)
Search for more papers by this authorDr. Nihal Deligonul
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Anthony J. Berdis
Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (USA)
Anthony J. Berdis, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (USA)===
Thomas G. Gray, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)===
Search for more papers by this authorCorresponding Author
Prof. Dr. Thomas G. Gray
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)
Anthony J. Berdis, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (USA)===
Thomas G. Gray, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)===
Search for more papers by this authorAyan Maity
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)
Search for more papers by this authorDr. Jung-Suk Choi
Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (USA)
Search for more papers by this authorDr. Thomas S. Teets
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (USA)
Search for more papers by this authorDr. Nihal Deligonul
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Anthony J. Berdis
Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (USA)
Anthony J. Berdis, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (USA)===
Thomas G. Gray, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)===
Search for more papers by this authorCorresponding Author
Prof. Dr. Thomas G. Gray
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)
Anthony J. Berdis, Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115 (USA)===
Thomas G. Gray, Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland Ohio 44106 (USA)===
Search for more papers by this authorGraphical Abstract
Glow and tell: The study of enzymatic nucleoside transport suffers for lack of optical probes that can be tracked noninvasively. Presented here are nucleoside analogues in which emissive, cyclometalated iridium(III) complexes are “clicked” to C-1 of deoxyribose in place of canonical nucleobases (see picture). The resulting complexes show visible luminescence at room temperature and 77 K with microsecond-length triplet lifetimes.
Abstract
Fundamental study of enzymatic nucleoside transport suffers for lack of optical probes that can be tracked noninvasively. Nucleoside transporters are integral membrane glycoproteins that mediate the salvage of nucleosides and their passage across cell membranes. The substrate recognition site is the deoxyribose sugar, often with little distinction among nucleobases. Reported here are nucleoside analogues in which emissive, cyclometalated iridium(III) complexes are “clicked” to C-1 of deoxyribose in place of canonical nucleobases. The resulting complexes show visible luminescence at room temperature and 77 K with microsecond-length triplet lifetimes. A representative complex is crystallographically characterized. Transport and luminescence are demonstrated in cultured human carcinoma (KB3-1) cells.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem_201301776_sm_miscellaneous_information.pdf1.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Yang, Q. Zhao, W. Feng, F. Li, Chem. Rev. 2013, 113, 192–270.
- 2F. L. Thorp-Greenwood, Organometallics 2012, 31, 5686–5692.
- 3M. Patra, G. Gasser, ChemBioChem 2012, 13, 1232–1252.
- 4E. Baggaley, J. A. Weinstein, J. A. G. Williams, Coord. Chem. Rev. 2012, 256, 1762–1785.
- 5F. L. Thorp-Greenwood, R. G. Balasingham, M. P. Coogan, J. Organomet. Chem. 2012, 714, 12–21.
- 6K. K.-W. Lo, A. W.-T. Choi, W. H.-T. Law, Dalton Trans. 2012, 41, 6021–6047.
- 7K. K.-W. Lo, S. P.-Y. Li, K. Y. Zhang, New J. Chem. 2011, 35, 265–287.
- 8Q. Zhao, C. Huang, F. Li, Chem. Soc. Rev. 2011, 40, 2508–2524.
- 9K. K.-W. Lo, K. Y. Zhang, S. P.-Y. Li, Pure Appl. Chem. 2011, 83, 823–840.
- 10K. L. Haas, K. J. Franz, Chem. Rev. 2009, 109, 4921–4960.
- 11A. Ruggi, D. N. Reinhoudt, A. H. Velders, in Bioinorganic Medicinal Chemistry (Ed.: ), Wiley, New York 2011, pp. 383–406.
10.1002/9783527633104.ch13 Google Scholar
- 12S. Sprouse, K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1984, 106, 6647–6653.
- 13K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1985, 107, 1431–1432.
- 14Y. Ohsawa, S. Sprouse, K. A. King, M. K. DeArmond, K. W. Hanck, R. J. Watts, J. Phys. Chem. 1987, 91, 1047–1054.
- 15K. Ichimura, T. Kobayashi, K. A. King, R. J. Watts, J. Phys. Chem. 1987, 91, 6104–6106.
- 16F. O. Garces, K. A. King, R. J. Watts, Inorg. Chem. 1988, 27, 3464–3471.
- 17F. O. Garces, R. J. Watts, Inorg. Chem. 1990, 29, 582–584.
- 18K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J. Watts, Inorg. Chem. 1991, 30, 1685–1687.
- 19A. P. Wilde, K. A. King, R. J. Watts, J. Phys. Chem. 1991, 95, 629–634.
- 20C. Ulbricht, B. Beyer, C. Friebe, A. Winter, U. S. Schubert, Adv. Mater. 2009, 21, 4418–4441.
- 21H. Yersin, W. J. Finkenzeller, in Highly Efficient OLEDs with Phosphorescent Materials (Ed.: ), Wiley-VCH, Weinheim 2008, pp. 1–97.
- 22F. Neve, A. Crispini, S. Campagna, S. Serroni, Inorg. Chem. 1999, 38, 2250–2258.
- 23A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M. Tsyba, R. Bau, M. E. Thompson, Inorg. Chem. 2005, 44, 8723–8732.
- 24S. Stagni, S. Colella, A. Palazzi, G. Valenti, S. Zacchini, F. Paolucci, M. Marcaccio, R. Q. Albuquerque, L. De Cola, Inorg. Chem. 2008, 47, 10509–10521.
- 25A. F. Rausch, M. E. Thompson, H. Yersin, J. Phys. Chem. A 2009, 113, 5927–5932.
- 26N. M. Shavaleev, F. Monti, R. D. Costa, R. Scopelliti, H. J. Bolink, E. Ortí, G. Accorsi, N. Armaroli, E. Baranoff, M. Grätzel, M. K. Nazeeruddin, Inorg. Chem. 2012, 51, 2263–2271.
- 27N. M. Shavaleev, F. Monti, R. Scopelliti, A. Baschieri, L. Sambri, N. Armaroli, M. Grätzel, M. K. Nazeeruddin, Organometallics 2013, 32, 460–467.
- 28C. Li, M. Yu, Y. Sun, Y. Wu, C. Huang, F. Li, J. Am. Chem. Soc. 2011, 133, 11231–11239.
- 29D.-L. Ma, W.-L. Wong, W.-H. Chung, F.-Y. Chan, P.-K. So, T.-S. Lai, Z.-Y. Zhou, Y.-C. Leung, K. Y. Wong, Angew. Chem. 2008, 120, 3795–3799;
10.1002/ange.200705319 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 3735–3739.
- 30X. Wang, J. Jia, Z. Huang, M. Zhou, H. Fei, Chem. Eur. J. 2011, 17, 8028–8032.
- 31Y. You, Y. Han, Y.-M. Lee, S. Y. Park, W. Nam, S. J. Lippard, J. Am. Chem. Soc. 2011, 133, 11488–11491.
- 32Y. You, S. Lee, T. Kim, K. Ohkubo, W.-S. Chae, S. Fukuzumi, G.-J. Jhon, W. Nam, S. J. Lippard, J. Am. Chem. Soc. 2011, 133, 18328–18342.
- 33P.-K. Lee, W. H.-T. Law, H.-W. Liu, K. K.-W. Lo, Inorg. Chem. 2011, 50, 8570–8579.
- 34P. Steunenberg, A. Ruggi, N. S. van den Berg, T. Buckle, J. Kuil, F. W. B. van Leeuwen, A. H. Velders, Inorg. Chem. 2012, 51, 2105–2114.
- 35Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang, F. Li, Organometallics 2010, 29, 1085–1091.
- 36K. K.-W. Lo, J. S.-W. Chan, L.-H. Lui, C.-K. Chung, Organometallics 2004, 23, 3108–3116.
- 37K. K-W. Lo, J. S.-Y. Lau, Inorg. Chem. 2007, 46, 700–709.
- 38K. K-W. Lo, K. Y. Zhang, S.-K. Leung, M.-C. Tang, Angew. Chem. 2008, 120, 2245–2248; Angew. Chem. Int. Ed. 2008, 47, 2213–2216.
- 39K. K.-W. Lo, K. Y. Zhang, C.-K. Chung, K. Y. Kwok, Chem. Eur. J. 2007, 13, 7110–7120.
- 40H.-W. Liu, K. Y. Zhang, W. H.-T. Law, K. K.-W. Lo, Organometallics 2010, 29, 3474–3476.
- 41J.-S. Choi, A. J. Berdis, Future Med. Chem. 2012, 4, 1461–1478.
- 42K. M. Smith, M. D. Slugoski, S. K. Loewen, A. M. Ng, S. Y. Yao, X. Z. Chen, E. Karpinski, C. E. Cass, S. A. Baldwin, J. D. Young, J. Biol. Chem. 2005, 280, 25436–25449.
- 43A. J. Berdis, Biochemistry 2008, 47, 8253–8260.
- 44W. Plunkett, V. Gandhi, Hematol. Cell Ther. 1996, 38 Suppl 2, S 67–74.
- 45V. Gandhi, W. Plunkett, Clin. Pharmacokinet. 2002, 41, 93–103.
- 46W. B. Parker, J. A. Secrist 3rd, W. R. Waud, Curr. Opin. Investig. Drugs 2004, 5, 592–596.
- 47V. Gandhi, W. Plunkett, Curr. Opin. Oncol. 2006, 18, 584–590.
- 48D. S. Gesto, N. M. F. S. A. Cerqueira, P. A. Fernandes, M. J. Ramos, Curr. Med. Chem. 2012, 19, 1076–1087.
- 49P. W. Marks, Expert Rev. Anticancer Ther. 2012, 12, 299–305.
- 50C. A. Koczor, R. A. Torres, W. Lewis, Expert Opin. Drug Metab. Toxicol. 2012, 8, 665–676.
- 51T. Robak, P. Robak, Curr. Pharm. Des. 2012, 18, 3373–3388.
- 52Z. L. Johnson, C.-G. Cheong, S.-Y. Lee, Nature 2012, 483, 489–493.
- 53For an alternative metalation, see: A. Maity, B. L. Anderson, N. Deligonul, T. G. Gray, Chem. Sci. 2013, 4, 1175–1181.
- 54For examples of cyclometalated iridium(III) complexes bearing one chelating triazole or triazolate ligand, see:
- 54aS. Liu, P. Müller, M. K. Takase, T. M. Swager, Inorg. Chem. 2011, 50, 7598–7609;
- 54bS. Zanarini, M. Felici, G. Valenti, M. Marcaccio, L. Prodi, S. Bonacchi, P. Contreras-Carballada, R. M. Williams, M. C. Feiters, R. J. M. Nolte, L. De Cola, F. Paolucci, Chem. Eur. J. 2011, 17, 4640–4647;
- 54cB. Beyer, C. Ulbricht, D. Escudero, C. Friebe, A. Winter, L. González, U. S. Schubert, Organometallics 2009, 28, 5478–5488;
- 54dE. Orselli, R. Q. Albuquerque, P. M. Fransen, R. Fröhlich, H. M. Janssen, L. De Cola, J. Mater. Chem. 2008, 18, 4579–4590.
- 55J. M. Fernández-Hernández, J. I. Beltrán, V. Lemaur, M.-D. Gálvez-López, C.-H. Chien, F. Polo, E. Orselli, R. Fröhlich, J. Cornil, L. De Cola, Inorg. Chem. 2013, 52, 1812–1824.
- 56K. N. Swanick, S. Ladouceur, E. Zysman-Colman, Z. Ding, Chem. Commun. 2012, 48, 3179–3181.
- 57A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377–7387.
- 58Y. You, W. Nam, Chem. Soc. Rev. 2012, 41, 7061–7084.
- 59R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833–1840.
- 60L. Dagnino, L. L. Bennett, Jr., A. R. P. Paterson, J. Biol. Chem. 1991, 266, 6312–6317.
- 61M. M. Gutierrez, K. M. Giacomini, Biochim. Biophys. Acta 1993, 1149, 202–208.
- 62M. E. Schaner, J. Wang, L. Zhang, S.-F. Su, K. M. Gerstin, K. M. Giacomini, J. Pharmacol. Exp. Ther. 1999, 289, 1487–1491.
- 63K. M. King, V. L. Damaraju, M. F. Vickers, S. Y. Yao, T. Lang, T. E. Tackaberry, D. A. Mowles, A. M. Ng, J. D. Young, C. E. Cass, Mol. Pharmacol. 2006, 69, 346–353.
- 64A. N. Elwi, V. L. Damaraju, M. L. Kuzma, D. A. Mowles, S. A. Baldwin, J. D. Young, M. B. Sawyer, C. E. Cass, Am. J. Physiol. Renal Physiol. 2009, 296, F 1439–1451.
- 65H. Li, G. A. Smolen, L. F. Beers, L. Xia, W. Gerald, J. Wang, D. A. Haber, S. B. Lee, PLoS One 2008, 3, e 2353.
- 66D. A. Griffith, S. M. Jarvis, Biochim. Biophys. Acta 1996, 1286, 153–181.
- 67M. Podgorska, K. Kocbuch, T. Pawelczyk, Acta Biochim. Pol. 2005, 52, 749–758.
- 68V. Rolland, M. Kotera, J. Lhomme, Synth. Commun. 1997, 27, 3505–3511.
- 69M. Nonoyama, Bull. Chem. Soc. Jpn. 1974, 47, 767–768.
- 70E. Baranoff, B. F. E. Curchod, J. Frey, R. Scopelliti, F. Kessler, I. Tavernelli, U. Rothlisberger, M. Graetzel, Md. K. Nazeeruddin, Inorg. Chem. 2012, 51, 215–224.
- 71I. Shin, S. Yoon, J. I. Kim, J. Lee, T. H. Kim, H. Kim, Electrochim. Acta 2011, 56, 6219–6223.
- 72T. Peng, Y. Yang, Y. Liu, D. Ma, Z. Houc, Y. Wang, Chem. Commun. 2011, 47, 3150–3152.
- 73M. Schmittel, S. Qinghai, Chem. Commun. 2012, 48, 2707–2709.
- 74S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304–4312.
- 75E. J. McLaurin, A. B. Greytak, M. G. Bawendi, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 12994–13001.
- 76J. N. Demas, G. A. Crosby, J. Phys. Chem. 1971, 75, 991–1024.
- 77S. Hamai, F. Hirayama, J. Phys. Chem. 1983, 87, 83–89.
- 78Bruker Advanced X-ray Solutions, SMART for WNT/2000 (Version 5.628), Bruker AXS, Inc., Madison, WI, 1997–2002.
- 79Bruker Advanced X-ray Solutions, SAINT, Version 6.45, Bruker AXS, Inc., Madison, WI, 1997–2003.
- 80Bruker Advanced X-ray Solutions, SHELXTL, Version 6.10, Bruker AXS, Inc., Madison, WI, 2000.
- 81Gaussian 09 (Revision A.02), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 82J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 83S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117–129.
- 84J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999–3093.
- 85E. Cancès, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032–3041.
- 86B. Mennucci, E. Cancès, J. Tomasi, J. Phys. Chem. B 1997, 101, 10506–10517.
- 87S. I. Gorelsky, AOMix: Program for Molecular Orbital Analysis, York University, Toronto, 1997: http://www.sg-chem.net.
- 88S. I. Gorelsky, A. B. P. Lever, J. Organomet. Chem. 2001, 635, 187–196.