Divergent Pathways and Competitive Mechanisms of Metathesis Reactions between 3-Arylprop-2-ynyl Esters and Aldehydes: An Experimental and Theoretical Study
Dr. Cristina Trujillo
Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)
Search for more papers by this authorDr. Goar Sánchez-Sanz
Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)
School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4 (Ireland)
Search for more papers by this authorIeva Karpavičienė
Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius (Lithuania)
Search for more papers by this authorDr. Ullrich Jahn
Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)
Search for more papers by this authorCorresponding Author
Dr. Inga Čikotienė
Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius (Lithuania)
Inga Čikotienė, Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius (Lithuania)===
Lubomír Rulíšek, Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)===
Search for more papers by this authorCorresponding Author
Dr. Lubomír Rulíšek
Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)
Inga Čikotienė, Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius (Lithuania)===
Lubomír Rulíšek, Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)===
Search for more papers by this authorDr. Cristina Trujillo
Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)
Search for more papers by this authorDr. Goar Sánchez-Sanz
Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)
School of Physics & Complex and Adaptive Systems Laboratory, University College Dublin, Belfield, Dublin 4 (Ireland)
Search for more papers by this authorIeva Karpavičienė
Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius (Lithuania)
Search for more papers by this authorDr. Ullrich Jahn
Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)
Search for more papers by this authorCorresponding Author
Dr. Inga Čikotienė
Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius (Lithuania)
Inga Čikotienė, Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius (Lithuania)===
Lubomír Rulíšek, Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)===
Search for more papers by this authorCorresponding Author
Dr. Lubomír Rulíšek
Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)
Inga Čikotienė, Department of Organic Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225, Vilnius (Lithuania)===
Lubomír Rulíšek, Institute of Organic Chemistry and Biochemistry, Gilead Sciences Research Center & IOCB, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6 (Czech Republic)===
Search for more papers by this authorGraphical Abstract
Abstract
Mechanistic studies of the reaction between 3-arylprop-2-ynyl esters and aldehydes catalyzed by BF3⋅Et2O were performed by isotopic labeling experiments and quantum chemical calculations. The reactions are shown to proceed by either a classical alkyne–carbonyl metathesis route or an unprecedented addition–rearrangement cascade. Depending on the structure of the starting materials and the reaction conditions, the products of these reactions can be Morita–Baylis–Hillman (MBH) adducts that are unavailable by traditional MBH reactions or E- and Z-α,β-unsaturated ketones. 18O-Labeling studies suggested the existence of two different reaction pathways to the products. These pathways were further examined by quantum chemical calculations that employed the DFT(wB97XD)/6-311+G(2d,p) method, together with the conductor-like screening model for realistic solvation (COSMO-RS). By using the wB97XD functional, the accuracy of the computed data is estimated to be 1–2 kcal mol−1, shown by the careful benchmarking of various DFT functionals against coupled cluster calculations at the CCSD(T)/aug-cc-pVTZ level of theory. Indeed, most of the experimental data were reproduced and explained by theory and it was convincingly shown that the branching point between the two distinct mechanisms is the formation of the first intermediate on the reaction pathway: either the four-membered oxete or the six-membered zwitterion. The deep mechanistic understanding of these reactions opens new synthetic avenues to chemically and biologically important α,β-unsaturated ketones.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem_201402551_sm_miscellaneous_information.pdf2.7 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1a Comprehensive Organic Synthesis Vol. 3 (Eds.: ), Pergamon, Oxford, 1991;
- 1bC. M. R. Volla, I. Atodiresei, M. Rueping, Chem. Rev. 2014, 114, 2390;
- 1cA. Bhunia, S. R. Yetraa, A. T. Biju, Chem. Soc. Rev. 2012, 41, 3140;
- 1dS. H. Cho, J. Y. Kim, J. Kwaka, S. Chang, Chem. Soc. Rev. 2011, 40, 5068.
- 2
- 2aB. M. Trost, Angew. Chem. 1995, 107, 285;
- 2bB. M. Trost, Science 1991, 254, 1471;
- 2cR. A. Sheldon, Pure Appl. Chem. 2000, 72, 1233;
- 2dC. M. Marson, Chem. Soc. Rev. 2012, 41, 7712;
- 2eM. B. Gawande, V. D. B. Bonifácio, R. Luque, P. S. Brancoa, R. S. Varma, Chem. Soc. Rev. 2013, 42, 5522.
- 3
- 3aB. L. Feringa, Acc. Chem. Res. 2000, 33, 346;
- 3bS. Woodward, Chem. Soc. Rev. 2000, 29, 393;
- 3cA. Alexakis, C. Benhaim, Eur. J. Org. Chem. 2002, 3221;
- 3dF. López, A. J. Minnaard, B. L. Feringa, Acc. Chem. Res. 2007, 40, 179;
- 3eS. Sulzer-Mossé, A. Alexakis, Chem. Commun. 2007, 3123.
- 4
- 4a Modern Aldol Reactions, Vols. 1 and 2 (Ed.: ), Wiley-VCH, Weinheim, 2004;
- 4bB. M. Trost, C. S. Brindle, Chem. Soc. Rev. 2010, 39, 1600;
- 4cJ. Mlynarski, J. Paradowska, Chem. Soc. Rev. 2008, 37, 1502;
- 4dA. Ramazani, A. R. Kazemizadeh, E. Ahmadi, N. Noshiranzadeh, A. Souldozi, Curr. Org. Chem. 2008, 12, 59;
- 4eK. M. Pietrusiewicz, M. Zablocka, Chem. Rev. 1994, 94, 1375;
- 4fB. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863.
- 5X. F. Wu, H. Neumann, A. Spannenberg, T. Schulz, H. J. Jiao, M. Beller, J. Am. Chem. Soc. 2010, 132, 14596.
- 6
- 6aK. H. Meyer, K. Schuster, Chem. Ber. 1922, 55, 819;
- 6bS. Swaminathan, K. V. Narayan, Chem. Rev. 1971, 71, 429;
- 6cY. Sugawara, W. Yamada, S. Yoshida, T. Ikeno, T. Yamada, J. Am. Chem. Soc. 2007, 129, 12902.
- 7
- 7aK. Matsuo, K. Ohtsuki, T. Yoshikawa, K. Shishido, K. Yokotani-Tomita, M. Shindo, Tetrahedron 2010, 66, 8407;
- 7bM. A. Evans, J. P. Morken, Org Lett. 2005, 7, 3371;
- 7cS. Ghorai, B. H. Lipshutz, K. Voigtritter, J. Org. Chem. 2011, 76, 4697;
- 7dH. Wakamatsu, S. Blechert Angew. Chem. 2002, 114, 2509;
- 7eH. Yang, R. G. Carter J. Org. Chem. 2010, 75, 4929;
- 7fR. Miyaji, K. Asano, S. Matsubara, Org Lett. 2013, 15, 3658;
- 7gJ. Louie, C. W. Bielawski, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 11312;
- 7hA. K. Chatterjee, T.-L. Choi, R. H. Grubbs, F. D. Toste, Adv. Synth. Catal. 2002, 344, 634.
- 8
- 8aH. Vieregge, H. J. T. Bos, J. F. Arens, Rec. Trav. Chim. 1959, 78, 664;
- 8bH. Vieregge, H. M. Schmidt, J. Renema, H. J. T. Bos, J. F. Arens, Rec. Trav. Chim. 1966, 85, 929.
- 9W. J. Middleton, J. Org. Chem. 1965, 30, 1307.
- 10M. Oblin, M. Rajzmann, J.-M. Pons, Tetrahedron 2001, 57, 3099.
- 11
- 11aS. G. Viswanathan, C.-J. Li, Tetrahedron Lett. 2002, 43, 1613;
- 11bL. W. Xu, L. Li, C. G. Xia, P. Q. Zhao, Helv. Chim. Acta 2004, 87, 3080;
- 11cM. Curini, F. Epifano, F. Maltese, O. Rosati, Synlett 2003, 0552;
- 11dR. P. Hsung, C. A. Zificsak, L. L. Wei, C. J. Douglas, H. Xiong, J. A. Mudler, Org. Lett. 1999, 1, 1237;
- 11eC. González-Rodríguez, L. Escalante, J. A. Varela, L. Castedo, C. Saá, Org. Lett. 2009, 11, 1531;
- 11fT. Jin, F. Yang, C. Liu, Y. Yamamoto, Chem. Commun. 2009, 3533.
- 12
- 12aT. Jin, Y. Yamamoto, Org. Lett. 2007, 9, 5259;
- 12bT. Jin, Y. Yamamoto, Org. Lett. 2008, 10, 3137;
- 12cE. M. L. Sze, W. Rao, M. J. Koh, P. W. H. Chan, Chem. Eur. J. 2011, 17, 1437;
- 12dJ. U. Rhee, M. J. Krische, Org. Lett. 2005, 7, 2493.
- 13I. Karpaviciene, I. Cikotiene, Org. Lett. 2013, 15, 224.
- 14It was also found that the presence of an electron-donating group on benzaldehydes diminishes the reaction rates and stimulates formation of a 2:1 adduct (cf. ref. [13]).
- 15
- 15aM. Shi, C.-Q. Li, J.-K. Jiang, Helv. Chim. Acta 2002, 85, 1051;
- 15bD. Basavaiah, V. V. L. Gowriswari, T. K. Bharathi, Tetrahedron Lett. 1987, 28, 4591;
- 15cM. Shi, C.-Q. Li, J.-K. Jiang, Molecules 2002, 7, 721.
- 16For mechanistically different gold-catalyzed reactions of propargylic esters, see:
- 16aN. Marion, S. P. Nolan, Angew. Chem. 2007, 119, 2806;
- 16bY. Peng, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2009, 131, 5062;
- 16cJ. W. Cran, M. E. Krafft, Angew. Chem. 2012, 124, 9532;
- 16dL. Zhang, J. Am. Chem. Soc. 2005, 127, 1684;
- 16eY. Yu, W. Yang, F. Rominger, A. S. K. Hashmi, Angew. Chem. 2013, 125, 7735;
- 16fR. K. Shiroodi, V. Gevorgyan, Chem. Soc. Rev. 2013, 42, 4991.
- 17J. C. Vederas, J. Am. Chem. Soc. 1980, 102, 374.
- 18P. Giraudeau, J. L. Wang, É. Baguet, C. R. Chim. 2006, 9, 525.
- 19E. L. Myers, C. P. Butts, V. K. Aggarwal, Chem. Commun. 2006, 4434.
- 20Y. Nishimoto, A. Okita, M. Yasuda, A. Baba, Org. Lett. 2012, 14, 1846.
- 21TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from www.turbomole.com.
- 22Gaussian 09, Revision A.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 23J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- 24S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 25F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- 26A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829.
- 27D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys. 1993, 98, 1358.
- 28S. Grimme, J. Chem. Phys. 2003, 118, 9095.
- 29J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
- 30
- 30aA. D. Becke, Phys. Rev. A 1988, 38, 3098;
- 30bC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785;
- 30cA. D. Becke, J. Chem. Phys. 1993, 98, 5648;
- 30dP. J. Stephens, F. J. Devlin, M. J. Frisch, C. F. Chabalowski, J. Phys. Chem. 1994, 98, 11623.
- 31K. Eichkorn, O. Treutler, H. Öhm, M. Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283.
- 32A. Klamt, J. Phys. Chem. 1995, 99, 2224.
- 33A. Klamt, V. Jonas, T. Buerger, J. C. W. Lohrenz, J. Phys. Chem. 1998, 102, 5074.
- 34F. Eckert, A. Klamt, COSMOtherm, version C3.0, release 12.01; COSMOlogic GmbH & Co. KG.
- 35
- 35aS. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200;
- 35bJ. P. Perdew, Phys. Rev. B 1986, 33, 8822.
- 36A. Klamt, G. Schuurmann, J. Chem. Soc. Perkin Trans. 2 1993, 799.
- 37F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, New York, 1999.