Copper-Mediated Aromatic Radiofluorination Revisited: Efficient Production of PET Tracers on a Preparative Scale
Dr. Boris D. Zlatopolskiy
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Both authors contributed equally to this work
Search for more papers by this authorJohannes Zischler
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Both authors contributed equally to this work
Search for more papers by this authorPhilipp Krapf
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Search for more papers by this authorFadi Zarrad
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Search for more papers by this authorElizaveta A. Urusova
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Clinic of Nuclear Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen (Germany)
Search for more papers by this authorDr. Elena Kordys
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Search for more papers by this authorPriv.-Doz. Dr. Heike Endepols
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Search for more papers by this authorCorresponding Author
Prof. Dr. Bernd Neumaier
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851Search for more papers by this authorDr. Boris D. Zlatopolskiy
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Both authors contributed equally to this work
Search for more papers by this authorJohannes Zischler
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Both authors contributed equally to this work
Search for more papers by this authorPhilipp Krapf
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Search for more papers by this authorFadi Zarrad
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Search for more papers by this authorElizaveta A. Urusova
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Clinic of Nuclear Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen (Germany)
Search for more papers by this authorDr. Elena Kordys
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Search for more papers by this authorPriv.-Doz. Dr. Heike Endepols
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Search for more papers by this authorCorresponding Author
Prof. Dr. Bernd Neumaier
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851
Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne (Germany)
Institute of Radiochemistry and Experimental Molecular Imaging, University Clinic Cologne, Kerpener Str. 62, 50937 Cologne (Germany), Fax: (+49) 221-47886851Search for more papers by this authorGraphical Abstract
Less is more: Copper-mediated nucleophilic aromatic radiofluorination under “low base” and “minimalist” conditions affords radiolabeled arenes in reasonable to excellent yields on a preparative scale. In particular, the “minimalist” approach circumvents time-consuming azeotropic drying, avoids the application of base and other additives, and enables efficient production of clinical doses of positron emission tomography (PET) tracers, such as [18F]FDA, 4-[18F]FPhe and [18F]DAA1106 (RCY=radiochemical yield).
Abstract
Two novel methods for copper-mediated aromatic nucleophilic radiofluorination were recently reported. Evaluation of these methods reveals that, although both are efficient in small-scale experiments, they are inoperative for the production of positron emission tomography (PET) tracers. Since high base content turned out to be responsible for low radiochemical conversions, a “low base” protocol has been developed which affords 18F-labeled arenes from diaryliodonium salts and aryl pinacol boronates in reasonable yields. Furthermore, implementation of our “minimalist” approach to the copper-mediated [18F]-fluorination of (mesityl)(aryl)iodonium salts allows the preparation of 18F-labeled arenes in excellent RCCs. The novel radiofluorination method circumvents time-consuming azeotropic drying and avoids the utilization of base and other additives, such as cryptands. Furthermore, this procedure enables the production of clinically relevant PET tracers; [18F]FDA, 4-[18F]FPhe, and [18F]DAA1106 are obtained in good isolated radiochemical yields. Additionally, [18F]DAA1106 has been evaluated in a rat stroke model and demonstrates excellent potential for visualization of translocator protein 18 kDa overexpression associated with neuroinflammation after ischemic stroke.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem_201405586_sm_miscellaneous_information.pdf2.7 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Ermert, BioMed Res. Int. 2014, 15;
- 1bK. Kettenbach, H. Schieferstein, T. L. Ross, Biomed Res. Int. 2014, 361329;
- 1cT. Rühl, W. Rafique, V. T. Lien, P. J. Riss, Chem. Commun. 2014, 50, 6056–6059;
- 1dB. D. Zlatopolskiy, P. Krapf, R. Richarz, H. Frauendorf, F. M. Mottaghy, B. Neumaier, Chem. Eur. J. 2014, 20, 4697–4703;
- 1eM. Tredwell, V. Gouverneur, Angew. Chem. Int. Ed. 2012, 51, 11426–11437; Angew. Chem. 2012, 124, 11590–11602;
- 1fB. D. Zlatopolskiy, R. Kandler, F. M. Mottaghy, B. Neumaier, Appl. Radiat. Isot. 2012, 70, 184–192.
- 2
- 2aA. F. Brooks, J. J. Topczewski, N. Ichiishi, M. S. Sanford, P. J. Scott, Chem. Sci. 2014, 5, 4545–4553;
- 2bS. H. Liang, N. Vasdev, Angew. Chem. Int. Ed. 2014, 53, 11416–11418;
- 2cS. H. Liang, N. Vasdev, Angew. Chem. 2014, 126, 11600–11602;
10.1002/ange.201407065 Google Scholar
- 2dT. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214–8264; Angew. Chem. 2013, 125, 8372–8423;
- 2eE. L. Cole, M. N. Stewart, R. Littich, R. Hoareau, P. J. H. Scott, Curr. Top. Med. Chem 2014, 14, 875–900.
- 3E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, Science 2011, 334, 639–642.
- 4A. S. Kamlet, C. N. Neumann, E. Lee, S. M. Carlin, C. K. Moseley, N. Stephenson, J. M. Hooker, T. Ritter, PloS one 2013, 8, e 59187.
- 5
- 5aE. Lee, J. M. Hooker, T. Ritter, J. Am. Chem. Soc. 2012, 134, 17456–17458;
- 5bH. Ren, H. Y. Wey, M. Strebl, R. Neelamegam, T. Ritter, J. M. Hooker, ACS Chem. Neurosci. 2014, 5, 611–615.
- 6N. Ichiishi, A. F. Brooks, J. J. Topczewski, M. E. Rodnick, M. S. Sanford, P. J. Scott, Org. Lett. 2014, 16, 3224–3227.
- 7J. H. Chun, S. Lu, Y. S. Lee, V. W. Pike, J. Org. Chem. 2010, 75, 3332–3338.
- 8M. Tredwell, S. M. Preshlock, N. J. Taylor, S. Gruber, M. Huiban, J. Passchier, J. Mercier, C. Genicot, V. Gouverneur, Angew. Chem. Int. Ed. 2014, 53, 7751–7755; Angew. Chem. 2014, 126, 7885–7889.
- 9Y. D. Ye, S. D. Schimler, P. S. Hanley, M. S. Sanford, J. Am. Chem. Soc. 2013, 135, 16292–16295.
- 10N. Ichiishi, A. J. Canty, B. F. Yates, M. S. Sanford, Org. Lett. 2013, 15, 5134–5137.
- 11See Supporting Information for complete experimental details.
- 12We found that the application of synthetic instead of ambient air significantly decreased deviations of RCCs. Consequently, in all experiments described here synthetic air was applied.
- 13D. S. Goldstein, G. Eisenhofer, J. A. Flynn, G. Wand, K. Pacak, Hypertension 2004, 43, 907–910.
- 14K. Mineura, M. Kowada, F. Shishido, Surg. Neurol. 1989, 31, 468–469.
- 15B. D. Zlatopolskiy, R. Kandler, D. Kobus, F. M. Mottaghy, B. Neumaier, Chem. Commun. 2012, 48, 7134–7136.
- 16R. Richarz, P. Krapf, F. Zarrad, E. A. Urusova, B. Neumaier, B. D. Zlatopolskiy, Org. Biomol. Chem. 2014, 12, 8094–8099.
- 17N. Malik, B. Zlatopolskiy, C. Solbach, W. Voelter, S. Reske, H.-J. Machulla, J. Radioanal. Nucl. Chem. 2011, 288, 563–569.
- 18G. Eisenhofer, D. Hovevey-Sion, I. J. Kopin, R. Miletich, K. L. Kirk, R. Finn, D. S. Goldstein, J. Pharm. Exp. Ther. 1989, 248, 419–427.
- 19
- 19aI. Ilias, B. Shulkin, K. Pacak, Trends Endocrinol. Metab. 2005, 16, 66–72;
- 19bD. S. Goldstein, G. Eisenhofer, B. B. Dunn, I. Armando, J. Lenders, E. Grossman, C. Holmes, K. L. Kirk, S. Bacharach, R. Adams, P. Herscovitch, I. J. Kopin, J. Am. Coll. Cardiol. 1993, 22, 1961–1971.
- 20
- 20aO. Eskola, T. J. Gronroos, A. Naum, P. Marjamaki, S. Forsback, J. Bergman, S. Lankimaki, J. Kiss, T. Savunen, J. Knuuti, M. Haaparanta, O. Solin, Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 800–810;
- 20bM. A. Channing, J. L. Musachio, J. J. Kusmierz in Radiochemical Syntheses, Wiley, 2012, pp. 125–138.
- 21Y. S. Ding, J. S. Fowler, S. J. Gatley, S. L. Dewey, A. P. Wolf, D. J. Schlyer, J. Med. Chem. 1991, 34, 861–863.
- 22S. DiMagno. Fluorination of aromatic ring systems; US Patent 13/125,209 (, 2012) (supplement 1).
- 23A. Vavere, E. Butch, B. Shulkin, S. Snyder, J. Nucl. Med. 2014, 55, 1410.
- 24C. Lemaire, M. Guillaume, L. Christiaens, A. J. Palmer, R. Cantineau, Int. J. Rad. Appl. Instrum. A. 1987, 38, 1033–1038.
- 25
- 25aK. Neumann, K. Glaspy, A. Vavere, S. Snyder, S. DiMagno, J. Nucl. Med. 2013, 54, 1069 (supplement 2);
- 25bW. Bodsch, H. H. Coenen, G. Stocklin, K. Takahashi, K. A. Hossmann, J. Neurochem. 1988, 50, 979–983.
- 26K. Hamacher, H. H. Coenen, Appl. Radiat. Isot. 2002, 57, 853–856.
- 27
- 27aC. Juhasz, S. Dwivedi, D. O. Kamson, S. K. Michelhaugh, S. Mittal, Mol. Imaging 2014, 13, 1–16;
- 27bM. Hutterer, M. Nowosielski, D. Putzer, N. L. Jansen, M. Seiz, M. Schocke, M. McCoy, G. Gobel, C. la Fougere, I. J. Virgolini, E. Trinka, A. H. Jacobs, G. Stockhammer, Neuro Oncol. 2013, 15, 341–351;
- 27cV. Dunet, C. Rossier, A. Buck, R. Stupp, J. O. Prior, J. Nucl. Med. 2012, 53, 207–214;
- 27dH. J. Wester, M. Herz, W. Weber, P. Heiss, R. Senekowitsch-Schmidtke, M. Schwaiger, G. Stöcklin, J. Nucl. Med. 1999, 40, 205–212.
- 28
- 28aE. R. O′Brien, V. Kersemans, M. Tredwell, B. Checa, S. Serres, M. S. Soto, V. Gouverneur, D. Leppert, D. C. Anthony, N. R. Sibson, J. Nucl. Med. 2014, 55, 275–280;
- 28bR. Rupprecht, V. Papadopoulos, G. Rammes, T. C. Baghai, J. Fan, N. Akula, G. Groyer, D. Adams, M. Schumacher, Nat. Rev. Drug Discovery 2010, 9, 971–988.
- 29
- 29aA. Takano, R. Arakawa, H. Ito, A. Tateno, H. Takahashi, R. Matsumoto, Y. Okubo, T. Suhara, Int. J. Neuropsychopharmacol. 2010, 13, 943–950;
- 29bJ. Maeda, T. Suhara, M. R. Zhang, T. Okauchi, F. Yasuno, Y. Ikoma, M. Inaji, Y. Nagai, A. Takano, S. Obayashi, K. Suzuki, Synapse 2004, 52, 283–291;
- 29cM.-R. Zhang, T. Kida, J. Noguchi, K. Furutsuka, J. Maeda, T. Suhara, K. Suzuki, Nucl Med Biol 2003, 30, 513–519.
- 30M.-R. Zhang, K. Kumata, K. Suzuki, Tetrahedron Lett. 2007, 48, 8632–8635.
- 31Owing to the low solubility of [18F]DAA1106 in water an ethanolic solution of the tracer was diluted with aqueous PEG-400 immediately before application. See the Supporting Information for additional experimental details.
- 32Guidline for Elemental Impurities, Q3D, ICH, 2013.
- 33H. Endepols, H. Mertgens, H. Backes, U. Himmelreich, B. Neumaier, R. Graf, G. Mies, J. Neurosci. Meth. 2014, in press, DOI: 101016/j.jneumeth.2014.11003.
- 34S. Rojas, A. Martin, M. J. Arranz, D. Pareto, J. Purroy, E. Verdaguer, J. Llop, V. Gomez, J. D. Gispert, O. Millan, A. Chamorro, A. M. Planas, J. Cereb. Blood Flow Metab. 2007, 27, 1975–1986.