Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction
Kasibhatta Josena Datta
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorDr. Kasibhatta Kumara Ramanatha Datta
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorCorresponding Author
Dr. Manoj B. Gawande
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorDr. Vaclav Ranc
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorDr. Klára Čépe
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorDr. Victor Malgras
World Premier International (WPI) Research Center for Materials, Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorProf. Yusuke Yamauchi
World Premier International (WPI) Research Center for Materials, Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorProf. Rajender S. Varma
Sustainable Technology Division, National Risk Management Research, Laboratory, US Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio, 45268 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Radek Zboril
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorKasibhatta Josena Datta
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorDr. Kasibhatta Kumara Ramanatha Datta
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorCorresponding Author
Dr. Manoj B. Gawande
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorDr. Vaclav Ranc
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorDr. Klára Čépe
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorDr. Victor Malgras
World Premier International (WPI) Research Center for Materials, Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorProf. Yusuke Yamauchi
World Premier International (WPI) Research Center for Materials, Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044 Japan
Search for more papers by this authorProf. Rajender S. Varma
Sustainable Technology Division, National Risk Management Research, Laboratory, US Environmental Protection Agency, 26 West Martin Luther King Drive, MS 443, Cincinnati, Ohio, 45268 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Radek Zboril
Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, 78371 Czech Republic
Search for more papers by this authorGraphical Abstract
Flower power: Highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology, comprising a Pd core and Pt shell, catalyze the efficient reduction of a variety of olefins in good to excellent yields. Their superior catalytic activity is due in part to the unique micro–mesoporous structure.
Abstract
A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics associated with the use of ascorbic acid as a weak reductant and suitable Pd/Pt atomic ratio (1:1) play a principal role in the formation mechanism of such branched Pd@Pt core–shell NPs, which differs from the traditional seed-mediated growth. The catalyst efficiently achieves the reduction of a variety of olefins in good to excellent yields. Importantly, higher catalytic efficiency of dandelion-like Pd@Pt core–shell NPs was observed for the olefin reduction than commercially available Pt black, Pd NPs, and physically admixed Pt black and Pd NPs. This superior catalytic behavior is not only due to larger surface area and synergistic effects but also to the unique micro–mesoporous structure with significant contribution of mesopores with sizes of several tens of nanometers.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201503441-sup-0001-misc_information.pdf941.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. C. Chen, P. Holt-Hindle, Chem. Rev. 2010, 110, 3767–3804;
- 1bX. Q. Huang, Y. J. Li, Y. Chen, E. B. Zhou, Y. X. Xu, H. L. Zhou, X. F. Duan, Y. Huang, Angew. Chem. Int. Ed. 2013, 52, 2520–2524;
- 2
- 2aS. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nat. Mater. 2007, 6, 692–697;
- 2bL. Wang, Y. Yamauchi, J. Am. Chem. Soc. 2009, 131, 9152–9153;
- 2cB. Lim, Y. N. Xia, Angew. Chem. Int. Ed. 2011, 50, 76–85;
- 3
- 3aM. B. Gawande, A. Goswami, T. Asefa, H. Guo, D.-L. Peng, A. Biradar, R. Zboril, R. S. Varma, Chem. Soc. Rev. 2015, 44, 7540–7590;
- 3bR. Ghosh Chaudhuri, S. Paria, Chem. Rev. 2012, 112, 2373–2433;
- 3cC. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed, Chem. Rev. 2005, 105, 1025–1102;
- 3dX. W. Liu, X. G. Liu, Angew. Chem. Int. Ed. 2012, 51, 3311–3313;
- 3eY. Ding, F. R. Fan, Z. Q. Tian, Z. L. Wang, J. Am. Chem. Soc. 2010, 132, 12480–12486.
- 4
- 4aD. S. Wang, Y. D. Li, Adv. Mater. 2011, 23, 1044–1060;
- 4bH. Yang, Angew. Chem. Int. Ed. 2011, 50, 2674–2676;
- 4cH. Zhang, M. S. Jin, Y. N. Xia, Chem. Soc. Rev. 2012, 41, 8035–8049;
- 4dF. Zaera, Chem. Soc. Rev. 2013, 42, 2746–2762;
- 4eQ. Zhang, I. Lee, J. B. Joo, F. Zaera, Y. D. Yin, Acc. Chem. Res. 2013, 46, 1816–1824;
- 4fH. Wang, L. Y. Chen, Y. H. Feng, H. Y. Chen, Acc. Chem. Res. 2013, 46, 1636–1646;
- 4gS. G. Zhou, K. McIlwrath, G. Jackson, B. Eichhorn, J. Am. Chem. Soc. 2006, 128, 1780–1781.
- 5
- 5aY. J. Li, Z. W. Wang, C. Y. Chiu, L. Y. Ruan, W. B. Yang, Y. Yang, R. E. Palmer, Y. Huang, Nanoscale 2012, 4, 845–851;
- 5bB. Lim, J. G. Wang, P. H. C. Camargo, M. J. Jiang, M. J. Kim, Y. N. Xia, Nano Lett. 2008, 8, 2535–2540.
- 6
- 6aJ. W. Hong, S. W. Kang, B. S. Choi, D. Kim, S. B. Lee, S. W. Han, ACS Nano 2012, 6, 2410–2419;
- 6bH. Zhang, Y. J. Yin, Y. J. Hu, C. Y. Li, P. Wu, S. H. Wei, C. X. Cai, J. Phys. Chem. A J. Phys. Chem. B J. Phys.Chem. C. 2010, 114, 11861–11867.
- 7
- 7aP. P. Zhang, Y. B. Hu, B. H. Li, Q. J. Zhang, C. Zhou, H. B. Yu, X. J. Zhang, L. Chen, B. Eichhorn, S. H. Zhou, ACS Catal. 2015, 5, 1335–1343;
- 7bB. Lim, M. J. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. M. Lu, Y. M. Zhu, Y. N. Xia, Science 2009, 324, 1302–1305;
- 7cM. J. Jiang, B. Lim, J. Tao, P. H. C. Camargo, C. Ma, Y. M. Zhu, Y. N. Xia, Nanoscale 2010, 2, 2406–2411;
- 7dH. Zhang, M. S. Jin, J. G. Wang, M. J. Kim, D. R. Yang, Y. N. Xia, J. Am. Chem. Soc. 2011, 133, 10422–10425;
- 7eB. Lim, J. G. Wang, P. H. C. Camargo, C. M. Cobley, M. J. Kim, Y. N. Xia, Angew. Chem. Int. Ed. 2009, 48, 6304–6308;
- 7fY. Liu, M. F. Chi, V. Mazumder, K. L. More, S. Soled, J. D. Henao, S. H. Sun, Chem. Mater. 2011, 23, 4199–4203;
- 7gH. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 2008, 130, 1818–1819;
- 7hS. F. Xie, S. I. Choi, N. Lu, L. T. Roling, J. A. Herron, L. Zhang, J. Park, J. G. Wang, M. J. Kim, Z. X. Xie, M. Mavrikakis, Y. N. Xia, Nano Lett. 2014, 14, 3570–3576;
- 7iY. Wang, N. Toshima, J. Phys. Chem. B 1997, 101, 5301–5306.
- 8
- 8aL. Wang, Y. Nemoto, Y. Yamauchi, J. Am. Chem. Soc. 2011, 133, 9674–9677;
- 8bL. Wang, Y. Yamauchi, J. Am. Chem. Soc. 2010, 132, 13636–13638;
- 8cL. Wang, Y. Yamauchi, Chem. Mater. 2011, 23, 2457–2465.
- 9
- 9aA. Dhakshinamoorthy, S. Navalon, D. Sempere, M. Alvaro, H. Garcia, Chem. Commun. 2013, 49, 2359–2361;
- 9bC. Smit, M. W. Fraaije, A. J. Minnaard, J. Org. Chem. 2008, 73, 9482–9485.
- 10
- 10aR. V. Jagadeesh, G. Wienhofer, F. A. Westerhaus, A. E. Surkus, H. Junge, K. Junge, M. Beller, Chem. Eur. J. 2011, 17, 14375–14379;
- 10bS. Horn, C. Gandolfi, M. Albrecht, Eur. J. Inorg. Chem. 2011, 2863–2868;
- 10cS. Gladiali, E. Alberico, Chem. Soc. Rev. 2006, 35, 226–236;
- 10dP. S. Kumbhar, J. Sanchez-Valente, J. M. M. Millet, F. Figueras, J. Catal. 2000, 191, 467–473;
- 10eS. M. Auer, J. D. Grunwaldt, R. A. Koppel, A. Baiker, J. Mol. Catal. A 1999, 139, 305–313;
- 10fR. Kadyrov, T. H. Riermeier, Angew. Chem. Int. Ed. 2003, 42, 5472–5474;
- 11
- 11aM. Benz, R. Prins, Appl. Catal. A 1999, 183, 325–333;
- 11bY. J. Gao, D. Ma, C. L. Wang, J. Guan, X. H. Bao, Chem. Br. Chem.Commun. 2011, 47, 2432–2434;
- 11cA. K. Jain, Synlett 2004, 2445–2446;
- 11dM. Lauwiner, P. Rys, J. Wissmann, Appl. Catal. A 1998, 172, 141–148;
- 11eP. G. Ren, D. X. Yan, X. Ji, T. Chen, Z. M. Li, Nanotechnology 2011, 22, 055705;
- 11fU. Sharma, P. Kumar, N. Kumar, V. Kumar, B. Singh, Adv. Synth. Catal. 2010, 352, 1834–1840.
- 12
- 12aL. Wang, Y. Yamauchi, J. Am. Chem. Soc. 2013, 135, 16762–16765;
- 12bH. Ataee-Esfahani, M. Imura, Y. Yamauchi, Angew. Chem. Int. Ed. 2013, 52, 13611–13615;
- 13Y. Z. Lu, Y. Y. Jiang, W. Chen, Nano Energy 2013, 2, 836–844.
- 14Y. X. Zhou, D. S. Wang, Y. D. Li, Chem. Commun. 2014, 50, 6141–6144.
- 15H. J. Lee, S. E. Habas, G. A. Somorjai, P. D. Yang, J. Am. Chem. Soc. 2008, 130, 5406–5407.
- 16
- 16aR. Choi, S. I. Choi, C. H. Choi, K. M. Nam, S. I. Woo, J. T. Park, S. W. Han, Chem. Eur. J. 2013, 19, 8190–8198;
- 16bP. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. F. Yu, Z. C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, A. Nilsson, Nat. Chem. 2010, 2, 454–460;
- 16cW. J. Tang, G. Henkelman, J. Chem. Phys. 2009, 130, 194504.