Importance of the Anchor Group Position (Para versus Meta) in Tetraphenylmethane Tripods: Synthesis and Self-Assembly Features
Marcin Lindner
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorDr. Michal Valášek
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorJan Homberg
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorKevin Edelmann
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorDr. Lukas Gerhard
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorProf. Dr. Wulf Wulfhekel
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorDr. Olaf Fuhr
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorTobias Wächter
Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Search for more papers by this authorProf. Dr. Michael Zharnikov
Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Search for more papers by this authorDr. Viliam Kolivoška
J. Heyrovský Institute of Physical Chemistry of ASCR v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
Search for more papers by this authorDr. Lubomír Pospíšil
J. Heyrovský Institute of Physical Chemistry of ASCR v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
Search for more papers by this authorDr. Gábor Mészáros
Research Centre for Natural Sciences, HAS, Magyar tudósok krt. 2, 1117 Budapest, Hungary
Search for more papers by this authorDr. Magdaléna Hromadová
J. Heyrovský Institute of Physical Chemistry of ASCR v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
Search for more papers by this authorCorresponding Author
Prof. Dr. Marcel Mayor
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University (SYSU), XinGangXi Rd. 135, 510275 Guangzhou, P. R. China
Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
Search for more papers by this authorMarcin Lindner
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorDr. Michal Valášek
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorJan Homberg
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorKevin Edelmann
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorDr. Lukas Gerhard
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorProf. Dr. Wulf Wulfhekel
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorDr. Olaf Fuhr
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorTobias Wächter
Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Search for more papers by this authorProf. Dr. Michael Zharnikov
Applied Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
Search for more papers by this authorDr. Viliam Kolivoška
J. Heyrovský Institute of Physical Chemistry of ASCR v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
Search for more papers by this authorDr. Lubomír Pospíšil
J. Heyrovský Institute of Physical Chemistry of ASCR v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
Search for more papers by this authorDr. Gábor Mészáros
Research Centre for Natural Sciences, HAS, Magyar tudósok krt. 2, 1117 Budapest, Hungary
Search for more papers by this authorDr. Magdaléna Hromadová
J. Heyrovský Institute of Physical Chemistry of ASCR v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
Search for more papers by this authorCorresponding Author
Prof. Dr. Marcel Mayor
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P. O. Box 3640, 76021 Karlsruhe, Germany
Lehn Institute of Functional Materials (LIFM), Sun Yat-Sen University (SYSU), XinGangXi Rd. 135, 510275 Guangzhou, P. R. China
Department of Chemistry, University of Basel, St. Johannsring 19, 4056 Basel, Switzerland
Search for more papers by this authorGraphical Abstract
Abstract
The efficient synthesis of tripodal platforms based on tetraphenylmethane with three acetyl-protected thiol groups in either meta or para positions relative to the central sp3 carbon for deposition on Au (111) surfaces is reported. These platforms are intended to provide a vertical arrangement of the substituent in position 4 of the perpendicular phenyl ring and an electronic coupling to the gold substrate. The self-assembly features of both derivatives are analyzed on Au (111) surfaces by low-temperature ultra-high-vacuum STM, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and reductive voltammetric desorption studies. These experiments indicated that the meta derivative forms a well-ordered monolayer, with most of the anchoring groups bound to the surface, whereas the para derivative forms a multilayer film with physically adsorbed adlayers on the chemisorbed para monolayer. Single-molecule conductance values for both tripodal platforms are obtained through an STM break junction experiment.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201602019-sup-0001-misc_information.pdf4.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, H. C. Klöck, M. O'Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 4570–4571.
- 2D. N. Bunck, W. R. Dichtel, Angew. Chem. Int. Ed. 2012, 51, 1885–1889;
Angew. Chem. 2012, 124, 1921–1925.
10.1002/ange.201108462 Google Scholar
- 3Y. B. Zhang, J. Su, H. Furukawa, Y. Yun, F. Gándara, A. Duong, X. Zou, O. M. Yaghi, J. Am. Chem. Soc. 2013, 135, 16336–16339.
- 4R. K. Totten, Y. S. Kim, M. H. Weston, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc. 2013, 135, 11720–11723.
- 5R. K. Totten, M. H. Weston, O. K. Farha, J. T. Hupp, S. T. Nguyen, ACS Catal. 2013, 3, 1454–1459.
- 6T. Qin, G. Zhou, H. Scheiber, R. E. Bauer, M. Baumgarten, C. E. Anson, E. J. W. List, K. Müllen, Angew. Chem. Int. Ed. 2008, 47, 8292–8296;
Angew. Chem. 2008, 120, 8416–8420.
10.1002/ange.200802854 Google Scholar
- 7K. Chiad, M. Grill, M. Baumgarten, M. Klapper, K. Müllen, Macromolecules 2013, 46, 3554–3560.
- 8P. Commins, J. E. Nuñez, M. A. Garcia-Garibay, J. Org. Chem. 2011, 76, 8355–8363.
- 9R. Arcos-Ramos, B. Rodríguez-Molina, M. Romero, J. M. Méndez-Stivalet, M. E. Ochoa, P. I. Ramírez-Montes, R. Santillan, M. A. Garcia-Garibay, N. Farfán, J. Org. Chem. 2012, 77, 6887–6894.
- 10H. C. Yeh, H. R. Lee, L. H. Chan, T. Y. J. Lin, C. T. Chen, E. Balasubramaniam, Y. T. Tao, Chem. Mater. 2001, 13, 2788–2796.
- 11X. M. Liu, C. He, J. Huang, J. Xu, Chem. Mater. 2005, 17, 434–441.
- 12M. ValáŠek, M. Lindner, M. Mayor, Beilstein J. Nanotechnol. 2016, 7, 374–405.
- 13T. Sakata, S. Murayama, A. Ueda, H. Otsuka, Y. Miyahara, Langmuir 2007, 23, 2269–2272.
- 14D. Hirayama, K. Takimiya, Y. Aso, T. Otsubo, T. Hasobe, H. Yamada, H. Imahori, S. Fukuzumi, Y. Sakata, J. Am. Chem. Soc. 2002, 124, 532–533.
- 15S.-E. Zhu, Y. M. Kuang, F. Geng, J. Z. Zhu, C. Z. Wang, Y. J. Yu, Y. Luo, Y. Xiao, K. Q. Liu, Q. S. Meng, L. Zhang, S. Jiang, Y. Zhang, G. W. Wang, Z. C. Dong, J. G. Hou, J. Am. Chem. Soc. 2013, 135, 15794–15800.
- 16L. Wei, K. Padmaja, W. J. Youngblood, A. B. Lysenko, J. S. Lindsey, D. F. Bocian, J. Org. Chem. 2004, 69, 1461–1469.
- 17Q. Li, A. V. Rukavishnikov, P. A. Petuhkov, T. O. Zaikova, C. Jin, J. F. W. Keana, J. Org. Chem. 2003, 68, 4862–4869.
- 18K.-Y. Chen, O. Ivashenko, G. T. Carroll, J. Robertus, J. C. M. Kistemaker, G. London, W. R. Browne, P. Rudolf, B. L. Feringa, J. Am. Chem. Soc. 2014, 136, 3219–3224.
- 19T. C. Pijper, O. Ivashenko, M. Walko, P. Rudolf, W. R. Browne, B. L. Feringa, J. Phys. Chem. C 2015, 119, 3648–3657.
- 20Y. Ie, T. Hirose, A. Yao, T. Yamada, N. Takagi, M. Kawai, Y. Aso, Phys. Chem. Chem. Phys. 2009, 11, 4949–4951.
- 21E. Galoppini, W. Guo, W. Zhang, P. G. Hoertz, P. Qu, G. J. Meyer, J. Am. Chem. Soc. 2002, 124, 7801–7811.
- 22B. Long, K. Nikitin, D. Fitzmaurice, J. Am. Chem. Soc. 2003, 125, 5152–5160.
- 23Y. Kuramochi, A. Sandanayaka, A. Satake, Y. Araki, K. Ogawa, O. Ito, Y. Kobuke, Chem. Eur. J. 2009, 15, 2317–2327.
- 24J. Hierrezuelo, E. Guillén, J. M. López-Romero, R. Rico, M. R. López-Ramírez, J. C. Otero, C. Cai, Eur. J. Org. Chem. 2010, 29, 5672–5680.
- 25K. Nikitin, K. Lestini, M. Lazzari, S. Altobello, D. Fitzmaurice, Langmuir 2007, 23, 12147–12153.
- 26J. A. Hutchison, H. Uji-i, A. Deres, T. Vosch, S. Rocha, S. Müller, A. A. Bastian, J. Enderlein, H. Nourouzi, C. Li, A. Herrmann, K. Müllen, F. De Schryver, J. Hofkens, Nat. Nanotechnol. 2014, 9, 131–136.
- 27J. Rodríguez-López, N. L. Ritzert, J. A. Mann, C. Tan, W. R. Dichtel, H. D. Abruña, J. Am. Chem. Soc. 2012, 134, 6224–6236.
- 28J. A. Mann, W. R. Dichtel, ACS Nano 2013, 7, 7193–7193.
- 29S. Ramachandra, K. C. Schuermann, F. Edafe, B. Belser, C. A. Nijhuis, W. F. Reus, G. M. Whitesides, L. De Cola, Inorg. Chem. 2011, 50, 1581–1591.
- 30A. Schramm, C. Stroh, K. Dössel, M. Lukas, M. Fischer, F. Schramm, O. Fuhr, H. von Löhneysen, M. Mayor, Eur. J. Inorg. Chem. 2013, 1, 70–79.
- 31A. Schramm, C. Stroh, K. Dössel, M. Lukas, O. Fuhr, H. von Löhneysen, M. Mayor, Chem. Commun. 2013, 49, 1076–1078.
- 32M. Lukas, K. Dössel, A. Schramm, O. Fuhr, C. Stroh, M. Mayor, K. Fink, H. von Löhneysen, ACS Nano 2013, 7, 6170–6180.
- 33M. ValáŠek, K. Edelmann, L. Gerhard, O. Fuhr, M. Lukas, M. Mayor, J. Org. Chem. 2014, 79, 7342–7357.
- 34Y. Yao, J. M. Tour, J. Org. Chem. 1999, 64, 1968–1971.
- 35H. Jian, J. M. Tour, J. Org. Chem. 2003, 68, 5091–5103.
- 36Y. Shirai, L. Cheng, B. Cheng, J. M. Tour, J. Am. Chem. Soc. 2006, 128, 13479–13489.
- 37Y. Shirai, J. M. Guerrero, T. Sasaki, T. He, H. Ding, G. Vives, B.-C. Yu, L. Cheng, A. K. Flatt, P. G. Taylor, Y. Gao, J. M. Tour, J. Org. Chem. 2009, 74, 7885–7897.
- 38V. KolivoŠka, M. Mohos, I. V. Pobelov, S. Rohrbach, K. Yoshida, W. J. Hong, Y. C. Fu, P. Moreno-García, G. Mészáros, P. Broekmann, M. Hromadová, R. Sokolová, M. ValáŠek, T. Wandlowski, Chem. Commun. 2014, 50, 11757–11759.
- 39C. J. Yu, Y. Chong, J. F. Kayyem, M. Gozin, J. Org. Chem. 1999, 64, 2070–2079.
- 40K. Fujimoto, H. Yorimitsu, A. Osuka, Org. Lett. 2014, 16, 972–975.
- 41T. Itoh, T. Mase, Org. Lett. 2004, 6, 4587–4590.
- 42B. D. Ratner, D. G. Castner, in Surface Analysis - The Principle Techniques (Eds.: ), Wiley, Chichester, 1997, Chapter 3.
- 43N. Ballav, B. Schüpbach, S. Neppl, P. Feulner, A. Terfort, M. Zharnikov, J. Phys. Chem. C 2010, 114, 12719–12727.
- 44M. Zharnikov, J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 380.
- 45F. Sander, T. Peterle, N. Ballav, F. von Wrochem, M. Zharnikov, M. Mayor, J. Phys. Chem. C 2010, 114, 4118–4125.
10.1021/jp911879x Google Scholar
- 46F. Schreiber, Prog. Surf. Sci. 2000, 65, 151–256.
- 47F. Chesneau, J. Zhao, C. Shen, M. Buck, M. Zharnikov, J. Phys. Chem. C 2010, 114, 7112–7119.
- 48F. Chesneau, B. Schüpbach, K. Szelągowska-Kunstman, N. Ballav, P. Cyganik, A. Terfort, M. Zharnikov, Phys. Chem. Chem. Phys. 2010, 12, 12123–12137.
- 49P. Waske, T. Wächter, A. Terfort, M. Zharnikov, J. Phys. Chem. C 2014, 118, 26049–26060.
- 50J. Stöhr, NEXAFS Spectroscopy, Springer Series in Surface Science Vol. 25, Springer, Berlin, 1992.
10.1007/978-3-662-02853-7 Google Scholar
- 51J. Horsley, J. Stöhr, A. P. Hitchcock, D. C. Newbury, A. L. Johnson, F. Sette, J. Chem. Phys. 1985, 83, 6099–6107.
- 52S. Frey, V. Stadler, K. Heister, W. Eck, M. Zharnikov, M. Grunze, B. Zeysing, A. Terfort, Langmuir 2001, 17, 2408–2415.
- 53N. Ballav, B. Schüpbach, O. Dethloff, P. Feulner, A. Terfort, M. Zharnikov, J. Am. Chem. Soc. 2007, 129, 15416–15417.
- 54S. Carniato, V. Ilakovac, V. J. J. Gallet, E. Kukk, Y. Luo, Phys. Rev. A 2005, 71, 022511.
- 55S. Rangan, J. J. Gallet, F. Bournel, S. Kubsky, K. Le Guen, G. Dufour, F. Rochet, F. Sirotti, S. Carniato, V. Ilakovac, Phys. Rev. B 2005, 71, 165318.
- 56L. Hallmann, A. Bashir, T. Strunskus, R. Adelung, V. Staemmler, C. Wöll, F. Tuczek, Langmuir 2008, 24, 5726–5733.
- 57H. Hamoudi, S. Neppl, P. Kao, B. Schüpbach, P. Feulner, A. Terfort, D. Allara, M. Zharnikov, Phys. Rev. Lett. 2011, 107, 027801.
- 58V. KolivoŠka, R. Sokolová, J. Kocábová, C. Loukou, J. M. Mallet, M. Hromadová, Monatsh. Chem. 2016, 147, 45–51.
- 59T. W. Schneider, D. A. Buttry, J. Am. Chem. Soc. 1993, 115, 12391–12397.
- 60O. Azzaroni, M. E. Vela, G. Andreasen, P. Carro, R. C. Salvarezza, J. Phys. Chem. B 2002, 106, 12267–12273.
- 61V. KolivoŠka, M. ValáŠek, M. Gál, R. Sokolová, J. Bulíčková, L. PospíŠil, G. Mészáros, M. Hromadová, J. Phys. Chem. Lett. 2013, 4, 589–595.
- 62K. Yoshida, I. V. Pobelov, D. Z. Manrique, T. Pope, G. Mészáros, M. Gulcur, M. R. Bryce, C. J. Lambert, T. Wandlowski, Sci. Rep. 2015, 5, 9002.
- 63W. Hong, D. Z. Manrique, P. Moreno-García, M. Gulcur, A. Mishchenko, C. J. Lambert, M. R. Bryce, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 2292–2304.
- 64C. Huang, A. V. Rudnev, W. Hong, T. Wandlowski, Chem. Soc. Rev. 2015, 44, 889–901.
- 65T. Markussen, R. Stadler, K. S. Thygesen, Nano Lett. 2010, 10, 4260–4265.
- 66J. Liu, B. Schüpbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A. Terfort, C. Wöll, Phys. Chem. Chem. Phys. 2010, 12, 4459–4472.
- 67K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson, A. Ulman, Langmuir 2001, 17, 2541–2544.
- 68J. F. Moulder, W. E. Stickle, P. E. Sobol, K. D Bomben, in Handbook of X-ray Photoelectron Spectroscopy (Ed.: ), PerkinElmer Corp., Eden Prairie, MN, 1992.
- 69J. Thome, M. Himmelhaus, M. Zharnikov, M. Grunze, Langmuir 1998, 14, 7435–7449.
- 70C. L. A. Lamont, J. Wilkes, Langmuir 1999, 15, 2037–2042.
- 71P. E. Batson, Phys. Rev. B 1993, 48, 2608.
- 72G. Mészáros, C. Li, I. Pobelov, T. Wandlowski, Nanotechnology 2007, 18, 424004.
- 73J. Gasior, program STMconductivity.exe.
- 74P. Moreno-García, A. La Rosa, V. KolivoŠka, D. Bermejo, W. Hong, K. Yoshida, M. Baghernejad, S. Filippone, P. Broekmann, T. Wandlowski, N. Martin, J. Am. Chem. Soc. 2015, 137, 2318–2327.