Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers
Corresponding Author
Dr. Audrey Llevot
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorPatrick-Kurt Dannecker
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorMarc von Czapiewski
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorLena C. Over
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorZafer Söyler
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Michael A. R. Meier
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Dr. Audrey Llevot
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorPatrick-Kurt Dannecker
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorMarc von Czapiewski
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorLena C. Over
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorZafer Söyler
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Michael A. R. Meier
Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Laboratory of Applied Chemistry, Fritz-Haber-Weg 6, Building 30.42, 76131 Karlsruhe, Germany
Search for more papers by this authorGraphical Abstract
Abstract
Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources.
References
- 1
- 1aS. Ma, T. Li, X. Liu, J. Zhu, Polym. Int. 2016, 65, 164–173;
- 1bC. Vilela, A. F. Sousa, A. C. Fonseca, A. C. Serra, J. F. J. Coelho, C. S. R. Freire, A. J. D. Silvestre, Polym. Chem. 2014, 5, 3119–3141;
- 1cK. Satoh, Polym. J. 2015, 47, 527–536;
- 1dR. Auvergne, S. Caillol, G. David, B. Boutevin, J.-P. Pascault, Chem. Rev. 2014, 114, 1082–1115;
- 1eJ. M. Raquez, M. Deléglise, M. F. Lacrampe, P. Krawczak, Prog. Polym. Sci. 2010, 35, 487–509;
- 1fA. Gandini, Green Chem. 2011, 13, 1061–1083;
- 1gK. Yao, C. Tang, Macromolecules 2013, 46, 1689–1712;
- 1hG. Lligadas, A. Tuzun, J. C. Ronda, M. Galia, V. Cadiz, Polym. Chem. 2014, 5, 6636–6644;
- 1iS. A. Miller, ACS Macro Lett. 2013, 2, 550–554;
- 1jA. Gandini, T. M. Lacerda, Prog. Polym. Sci. 2015, 48, 1–39.
- 2P. Anastas, N. Eghbali, Chem. Soc. Rev. 2010, 39, 301–312.
- 3
- 3aU. Biermann, U. Bornscheuer, M. A. R. Meier, J. O. Metzger, H. J. Schäfer, Angew. Chem. Int. Ed. 2011, 50, 3854–3871;
Angew. Chem. 2011, 123, 3938–3956;
10.1002/ange.201002767 Google Scholar
- 3bM. A. R. Meier, J. O. Metzger, U. S. Schubert, Chem. Soc. Rev. 2007, 36, 1788–1802.
- 4
- 4aC. Voirin, S. Caillol, N. V. Sadavarte, B. V. Tawade, B. Boutevin, P. P. Wadgaonkar, Polym. Chem. 2014, 5, 3142–3162;
- 4bM. Desroches, R. Auvergne, B. Boutevin, S. Caillol, Ol. Corps Gras Lipides 2013, 20, 16–22;
10.1051/ocl.2012.0489 Google Scholar
- 4cM. Galià, L. M. de Espinosa, J. C. Ronda, G. Lligadas, V. Cádiz, Eur. J. Lipid Sci. Technol. 2010, 112, 87–96;
- 4dR. Hoogenboom, Eur. J. Lipid Sci. Technol. 2011, 113, 59–71;
- 4eD. P. Pfister, Y. Xia, R. C. Larock, ChemSusChem 2011, 4, 703–717;
- 4fG. Lligadas, J. C. Ronda, M. Galià, V. Cádiz, Mater. Today 2013, 16, 337–343;
- 4gL. Maisonneuve, T. Lebarbe, E. Grau, H. Cramail, Polym. Chem. 2013, 4, 5472–5517.
- 5N. Kolb, M. A. R. Meier, Green Chem. 2012, 14, 2429–2435.
- 6
- 6aO. Türünç, M. A. R. Meier, Macromol. Rapid Commun. 2010, 31, 1822–1826;
- 6bO. Türünç, M. Firdaus, G. Klein, M. A. R. Meier, Green Chem. 2012, 14, 2577;
- 6cO. van den Berg, T. Dispinar, B. Hommez, F. E. Du Prez, Eur. Polym. J.2013, 49, 804–812;
- 6dR. J. González-Paz, C. Lluch, G. Lligadas, J. C. Ronda, M. Galià, V. Cádiz, J. Polym. Sci. Part A 2011, 49, 2407–2416;
- 6eM. Desroches, S. Caillol, V. Lapinte, R. Auvergne, B. Boutevin, Macromolecules 2011, 44, 2489–2500.
- 7M. Firdaus, M. A. R. Meier, U. Biermann, J. O. Metzger, Eur. J. Lipid Sci. Technol. 2014, 116, 31–36.
- 8
- 8aS. Warwel, F. Brüse, C. Demes, M. Kunz, M. R. g. Klaas, Chemosphere 2001, 43, 39–48;
- 8bA. Rybak, M. A. R. Meier, ChemSusChem 2008, 1, 542–547;
- 8cH. Mutlu, M. A. R. Meier, Macromol. Chem. Phys. 2009, 210, 1019–1025;
- 8dT. Lebarbé, A. S. More, P. S. Sane, E. Grau, C. Alfos, H. Cramail, Macromol. Rapid Commun. 2014, 35, 479–483.
- 9H. Mutlu, R. Hofsäß, R. E. Montenegro, M. A. R. Meier, RSC Adv. 2013, 3, 4927–4934.
- 10M. Winkler, C. Romain, M. A. R. Meier, C. K. Williams, Green Chem. 2015, 17, 300–306.
- 11R.-R. Ang, L. Tin Sin, S.-T. Bee, T.-T. Tee, A. A. H. Kadhum, A. R. Rahmat, B. A. Wasmi, J. Cleaner Prod. 2015, 102, 1–17.
- 12T. Mitsudome, T. Umetani, N. Nosaka, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, Angew. Chem. Int. Ed. 2006, 45, 481–485;
Angew. Chem. 2006, 118, 495–499.
10.1002/ange.200502886 Google Scholar
- 13M. Winkler, M. A. R. Meier, Green Chem. 2014, 16, 1784–1788.
- 14S.-P. Hui, T. Yoshimura, T. Murai, H. Chiba, T. Kurosawa, Anal. Sci. 2000, 16, 1023–1028.
- 15M. Moreno, G. Lligadas, J. C. Ronda, M. Galià, V. Cádiz, J. Polym. Sci. Part A 2012, 50, 3206–3213.
- 16K. Louis, L. Vivier, J.-M. Clacens, M. Brandhorst, J.-L. Dubois, K. D. O. Vigier, Y. Pouilloux, Green Chem. 2014, 16, 96–101.
- 17C. Jiménez-Rodriguez, G. R. Eastham, D. J. Cole-Hamilton, Inorg. Chem. Commun. 2005, 8, 878–881.
- 18D. Quinzler, S. Mecking, Angew. Chem. Int. Ed. 2010, 49, 4306–4308;
Angew. Chem. 2010, 122, 4402–4404.
10.1002/ange.201001510 Google Scholar
- 19J. Zhang, G. Leitus, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 2006, 45, 1113–1115; Angew. Chem. 2006, 118, 1131–1133.
- 20C. Gunanathan, D. Milstein, Angew. Chem. Int. Ed. 2008, 47, 8661–8664;
Angew. Chem. 2008, 120, 8789–8792.
10.1002/ange.200803229 Google Scholar
- 21
- 21aS. Imm, S. Bähn, L. Neubert, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 8126–8129;
Angew. Chem. 2010, 122, 8303–8306;
10.1002/ange.201002576 Google Scholar
- 21bD. Pingen, C. Müller, D. Vogt, Angew. Chem. Int. Ed. 2010, 49, 8130–8133;
Angew. Chem. 2010, 122, 8307–8310.
10.1002/ange.201002583 Google Scholar
- 22G. Walther, J. Deutsch, A. Martin, F.-E. Baumann, D. Fridag, R. Franke, A. Köckritz, ChemSusChem 2011, 4, 1052–1054.
- 23G. Lligadas, J. C. Ronda, M. Galià, V. Cádiz, Biomacromolecules 2010, 11, 2825–2835.
- 24
- 24aA. S. More, T. Lebarbé, L. Maisonneuve, B. Gadenne, C. Alfos, H. Cramail, Eur. Polym. J. 2013, 49, 823–833;
- 24bO. Kreye, H. Mutlu, M. A. R. Meier, Green Chem. 2013, 15, 1431–1455.
- 25L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, H. Cramail, Chem. Rev. 2015, 115, 12407–12439.
- 26
- 26aA. Boyer, E. Cloutet, T. Tassaing, B. Gadenne, C. Alfos, H. Cramail, Green Chem. 2010, 12, 2205–2213;
- 26bS. Benyahya, M. Desroches, R. Auvergne, S. Carlotti, S. Caillol, B. Boutevin, Polym. Chem. 2011, 2, 2661–2667.
- 27M. Unverferth, O. Kreye, A. Prohammer, M. A. R. Meier, Macromol. Rapid Commun. 2013, 34, 1569–1574.
- 28
- 28aA. Corma, S. Iborra, A. Velty, Chem. Rev. 2007, 107, 2411–2502;
- 28bF. R. Marín, C. Soler-Rivas, O. Benavente-García, J. Castillo, J. A. Pérez-Alvarez, Food Chem. 2007, 100, 736–741.
- 29
- 29aM. Winnacker, B. Rieger, ChemSusChem 2015, 8, 2455–2471;
- 29bP. A. Wilbon, F. Chu, C. Tang, Macromol. Rapid Commun. 2013, 34, 8–37.
- 30W. J. Roberts, A. R. Day, J. Am. Chem. Soc. 1950, 72, 1226–1230.
- 31N. A. Kukhta, I. V. Vasilenko, S. V. Kostjuk, Green Chem. 2011, 13, 2362–2364.
- 32K. Satoh, A. Nakahara, K. Mukunoki, H. Sugiyama, H. Saito, M. Kamigaito, Polym. Chem. 2014, 5, 3222–3230.
- 33Y. Ishido, A. Kanazawa, S. Kanaoka, S. Aoshima, Macromolecules 2012, 45, 4060–4068.
- 34B. Sibaja, J. Sargent, M. L. Auad, J. Appl. Polym. Sci. 2014, 131, 41155.
- 35J. Hilschmann, G. Kali, Eur. Polym. J. 2015, 73, 363–373.
- 36H. Miyaji, K. Satoh, M. Kamigaito, Angew. Chem. Int. Ed. 2016, 55, 1372–1376;
Angew. Chem. 2016, 128, 1394–1398.
10.1002/ange.201509379 Google Scholar
- 37M. F. Sainz, J. A. Souto, D. Regentova, M. K. G. Johansson, S. T. Timhagen, D. J. Irvine, P. Buijsen, C. E. Koning, R. A. Stockman, S. M. Howdle, Polym. Chem. 2016, 7, 2882–2887.
- 38E. Grau, S. Mecking, Green Chem. 2013, 15, 1112–1115.
- 39J. R. Lowe, M. T. Martello, W. B. Tolman, M. A. Hillmyer, Polym. Chem. 2011, 2, 702–708.
- 40M. Winnacker, S. Vagin, V. Auer, B. Rieger, Macromol. Chem. Phys. 2014, 215, 1654–1660.
- 41
- 41aM. Firdaus, L. Montero de Espinosa, M. A. R. Meier, Macromolecules 2011, 44, 7253–7262;
- 41bM. Firdaus, M. A. R. Meier, Green Chem. 2013, 15, 370–380.
- 42M. Claudino, J.-M. Mathevet, M. Jonsson, M. Johansson, Polym. Chem. 2014, 5, 3245–3260.
- 43C. M. Byrne, S. D. Allen, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 2004, 126, 11404–11405.
- 44J. Hilschmann, G. Kali, Eur. Polym. J. 2015, 73, 363–373.
- 45A. Mavrogiorgou, M. Baikousi, V. Costas, E. Mouzourakis, Y. Deligiannakis, M. A. Karakassides, M. Louloudi, J. Mol. Catal. A 2016, 413, 40–55.
- 46W. O. S. Doherty, P. Mousavioun, C. M. Fellows, Ind. Crops Prod. 2011, 33, 259–276.
- 47
- 47aH. Chung, N. R. Washburn, Green Mater. 2013, 1, 137–160;
- 47bS. Sen, S. Patil, D. S. Argyropoulos, Green Chem. 2015, 17, 4862–4887;
- 47cD. Kai, M. J. Tan, P. L. Chee, Y. K. Chua, Y. L. Yap, X. J. Loh, Green Chem. 2016, 18, 1175–1200.
- 48
- 48aS. Laurichesse, L. Avérous, Prog. Polym. Sci. 2014, 39, 1266–1290;
- 48bL. Hu, H. Pan, Y. Zhou, M. Zhang, Bioresources 2011, 6, 3515–3525.
- 49S. Laurichesse, C. Huillet, L. Averous, Green Chem. 2014, 16, 3958–3970.
- 50S. Sen, S. Patil, D. S. Argyropoulos, Green Chem. 2015, 17, 1077–1087.
- 51H. Sadeghifar, D. S. Argyropoulos, ACS Sustainable Chem. Eng. 2015, 3, 349–356.
- 52L. C. Over, M. A. R. Meier, Green Chem. 2016, 18, 197–207.
- 53I. Kühnel, J. Podschun, B. Saake, R. Lehnen, Holzforsch. 2015, 69, 531–538.
- 54
- 54aM. A. Rahman, D. De Santis, G. Spagnoli, G. Ramorino, M. Penco, V. T. Phuong, A. Lazzeri, J. Appl. Polym. Sci. 2013, 129, 202–214;
- 54bC. Mu, L. Xue, J. Zhu, M. Jiang, Z. Zhou, Bioresources 2014, 9, 5557–5566;
- 54cS. Livi, V. Bugatti, M. Marechal, B. G. Soares, G. M. O. Barra, J. Duchet-Rumeau, J.-F. Gerard, RSC Adv. 2015, 5, 1989–1998;
- 54dI. Spiridon, K. Leluk, A. M. Resmerita, R. N. Darie, Composites Part B 2015, 69, 342–349;
- 54eS. Wang, Y. Li, H. Xiang, Z. Zhou, T. Chang, M. Zhu, Compos. Sci. Technol. 2015, 119, 20–25.
- 55
- 55aY.-L. Chung, J. V. Olsson, R. J. Li, C. W. Frank, R. M. Waymouth, S. L. Billington, E. S. Sattely, ACS Sustainable Chem. Eng. 2013, 1, 1231–1238;
- 55bY. Sun, L. Yang, X. Lu, C. He, J. Mater. Chem. A 2015, 3, 3699–3709;
- 55cS. Laurichesse, L. Avérous, Polymer 2013, 54, 3882–3890;
- 55dX. Liu, E. Zong, J. Jiang, S. Fu, J. Wang, B. Xu, W. Li, X. Lin, Y. Xu, C. Wang, F. Chu, Int. J. Biol. Macromol. 2015, 81, 521–529;
- 55eR. A. Pérez-Camargo, G. Saenz, S. Laurichesse, M. T. Casas, J. Puiggalí, L. Avérous, A. J. Müller, J. Polym. Sci. Part B 2015, 53, 1736–1750;
- 55fY. Matsushita, T. Inomata, Y. Takagi, T. Hasegawa, K. Fukushima, J. Wood Sci. 2011, 57, 214–218.
- 56A. Lee, Y. Deng, Eur. Polym. J. 2015, 63, 67–73.
- 57C. G. da Silva, S. Grelier, F. Pichavant, E. Frollini, A. Castellan, Ind. Crops Prod. 2013, 42, 87–95.
- 58M. P. Pandey, C. S. Kim, Chem. Eng. Technol. 2011, 34, 29–41.
- 59
- 59aM. Fache, B. Boutevin, S. Caillol, ACS Sustainable Chem. Eng. 2016, 4, 35–46;
- 59bA. Llevot, E. Grau, S. Carlotti, S. Grelier, H. Cramail, Macromol. Rapid Commun. 2016, 37, 9–28.
- 60
- 60aL. Mialon, A. G. Pemba, S. A. Miller, Green Chem. 2010, 12, 1704;
- 60bL. Mialon, R. Vanderhenst, A. G. Pemba, S. A. Miller, Macromol. Rapid Commun. 2011, 32, 1386–1392.
- 61M. Fache, B. Boutevin, S. Caillol, Green Chem. 2016, 18, 712–725.
- 62A. Llevot, E. Grau, S. Carlotti, S. Grelier, H. Cramail, J. Mol. Catal. B 2016, 125, 34–41.
- 63J. Liu, S. Willför, C. Xu, Bioact. Carbohydr. Diet. Fibre 2015, 5, 31–61.
- 64
- 64aM. Rose, R. Palkovits, Macromol. Rapid Commun. 2011, 32, 1299–1311;
- 64bF. Xie, P. Luckman, J. Milne, L. McDonald, C. Young, C. Y. Tu, T. D. Pasquale, R. Faveere, P. J. Halley, J. Renewable Mater. 2014, 2, 95–106.
- 65H. P. Fink, P. Weigel, H. J. Purz, J. Ganster, Prog. Polym. Sci. 2001, 26, 1473–1524.
- 66
- 66aG. T. Ciacco, T. F. Liebert, E. Frollini, T. J. Heinze, Cellulose 2003, 10, 125–132;
- 66bC. L. McCormick, T. R. Dawsey, Macromolecules 1990, 23, 3606–3610.
- 67
- 67aM. Gericke, P. Fardim, T. Heinze, Molecules 2012, 17, 7458–7502;
- 67bT. Heinze, S. Dorn, M. Schöbitz, T. Liebert, S. Köhler, F. Meister, Macromol. Symp. 2008, 262, 8–22;
- 67cK. Shill, S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark, H. W. Blanch, Biotechnol. Bioeng. 2011, 108, 511–520;
- 67dH. Wang, G. Gurau, R. D. Rogers, Chem. Soc. Rev. 2012, 41, 1519–1537.
- 68
- 68aJ. Wu, J. Zhang, H. Zhang, J. He, Q. Ren, M. Guo, Biomacromolecules 2004, 5, 266–268;
- 68bJ. Vitz, T. Erdmenger, C. Haensch, U. S. Schubert, Green Chem. 2009, 11, 417–424.
- 69
- 69aX. Zhang, W. Zhang, D. Tian, Z. Zhou, C. Lu, RSC Adv. 2013, 3, 7722–7725;
- 69bD. Tian, Y. Han, C. Lu, X. Zhang, G. Yuan, Carbohydr. Polym. 2014, 113, 83–90.
- 70
- 70aY. Luan, J. Zhang, M. Zhan, J. Wu, J. Zhang, J. He, Carbohydr. Polym. 2013, 92, 307–311;
- 70bW. Y. Li, A. X. Jin, C. F. Liu, R. C. Sun, A. P. Zhang, J. F. Kennedy, Carbohydr. Polym. 2009, 78, 389–395.
- 71J. Mergy, A. Fournier, E. Hachet, R. Auzély-Velty, J. Polym. Sci. Part A 2012, 50, 4019–4028.
- 72A. Schenzel, A. Hufendiek, C. Barner-Kowollik, M. A. R. Meier, Green Chem. 2014, 16, 3266–3271.
- 73X. Meng, K. J. Edgar, Prog. Polym. Sci. 2016, 53, 52–85.
- 74
- 74aH. Mutlu, J. Ruiz, S. C. Solleder, M. A. R. Meier, Green Chem. 2012, 14, 1728–1735;
- 74bP. Tundo, M. Selva, Acc. Chem. Res. 2002, 35, 706–716.
- 75S. R. Labafzadeh, K. J. Helminen, I. Kilpeläinen, A. W. T. King, ChemSusChem 2015, 8, 77–81.
- 76P. G. Jessop, D. J. Heldebrant, X. Li, C. A. Eckert, C. L. Liotta, Nature 2005, 436, 1102.
- 77H. Xie, X. Yu, Y. Yang, Z. K. Zhao, Green Chem. 2014, 16, 2422–2427.
- 78Y. Yang, H. Xie, E. Liu, Green Chem. 2014, 16, 3018–3023.
- 79Q. Zhang, N. S. Oztekin, J. Barrault, K. De Oliveira Vigier, F. Jérôme, ChemSusChem 2013, 6, 593–596.
- 80Y. Yang, L. Song, C. Peng, E. Liu, H. Xie, Green Chem. 2015, 17, 2758–2763.
- 81L. Song, Y. Yang, H. Xie, E. Liu, ChemSusChem 2015, 8, 3217–3221.
- 82
- 82aF. H. Isikgor, C. R. Becer, Polym. Chem. 2015, 6, 4497–4559;
- 82bI. Delidovich, P. J. C. Hausoul, L. Deng, R. Pfützenreuter, M. Rose, R. Palkovits, Chem. Rev. 2016, 116, 1540–1599;
- 82cJ. A. Galbis, M. d. G. García-Martín, M. V. de Paz, E. Galbis, Chem. Rev. 2016, 116, 1600–1636;
- 82dW. Deng, Q. Zhang, Y. Wang, J. Energy Chem. 2015, 24, 595–607;
- 82eG. Jäger, J. Büchs, Biotechnol. J. 2012, 7, 1122–1136;
- 82fH. Kobayashi, A. Fukuoka, Green Chem. 2013, 15, 1740–1763.
- 83
- 83aS. Kobayashi, Polym. Adv. Technol. 2015, 26, 677–686;
- 83bJ. Zhang, H. Shi, D. Wu, Z. Xing, A. Zhang, Y. Yang, Q. Li, Process Biochem. 2014, 49, 797–806;
- 83cS. Kobayashi, A. Makino, Chem. Rev. 2009, 109, 5288–5353;
- 83dN. Miletić, K. Loos, R. A. Gross, in Biocatalysis in Polymer Chemistry, Wiley-VCH, Weinheim, 2010, pp. 83–129.
10.1002/9783527632534.ch4 Google Scholar
- 84
- 84aS. Kundu, A. S. Bhangale, W. E. Wallace, K. M. Flynn, C. M. Guttman, R. A. Gross, K. L. Beers, J. Am. Chem. Soc. 2011, 133, 6006–6011;
- 84bZ. Mao, M. Ganesh, M. Bucaro, I. Smolianski, R. A. Gross, A. M. Lyons, Biomacromolecules 2014, 15, 4627–4636;
- 84cS. Spinella, M. Ganesh, G. Lo Re, S. Zhang, J. M. Raquez, P. Dubois, R. A. Gross, Green Chem. 2015, 17, 4146–4150.
- 85
- 85aD. Juais, A. F. Naves, C. Li, R. A. Gross, L. H. Catalani, Macromolecules 2010, 43, 10315–10319;
- 85bY. Jiang, A. J. J. Woortman, G. O. R. Alberda van Ekenstein, K. Loos, Polym. Chem. 2015, 6, 5198–5211;
- 85cY. Jiang, D. Maniar, A. J. J. Woortman, G. O. R. Alberda van Ekenstein, K. Loos, Biomacromolecules 2015, 16, 3674–3685.
- 86S. Muñoz-Guerra, C. Lavilla, C. Japu, A. Martinez de Ilarduya, Green Chem. 2014, 16, 1716–1739.
- 87Q. Li, W. Zhu, C. Li, G. Guan, D. Zhang, Y. Xiao, L. Zheng, J. Polym. Sci. Part A 2013, 51, 1387–1397.
- 88J. J. Gallagher, M. A. Hillmyer, T. M. Reineke, ACS Sustainable Chem. Eng. 2015, 3, 662–667.
- 89A. F. Sousa, C. Vilela, A. C. Fonseca, M. Matos, C. S. R. Freire, G.-J. M. Gruter, J. F. J. Coelho, A. J. D. Silvestre, Polym. Chem. 2015, 6, 5961–5983.
- 90T. Pan, J. Deng, Q. Xu, Y. Zuo, Q.-X. Guo, Y. Fu, ChemSusChem 2013, 6, 47–50.
- 91R. J. Harrisson, M. Moyle, Org. Synth. 1963, 4, 493.
- 92J. Becker, A. Lange, J. Fabarius, C. Wittmann, Curr. Opin. Biotechnol. 2015, 36, 168–175.
- 93
- 93aY. Jiang, A. Woortman, G. Alberda van Ekenstein, K. Loos, Polym. Chem. 2015, 6, 5451–5463;
- 93bY. Jiang, G. O. R. A. van Ekenstein, A. J. J. Woortman, K. Loos, Macromol. Chem. Phys. 2014, 215, 2185–2197.
- 94M. Winkler, T. M. Lacerda, F. Mack, M. A. R. Meier, Macromolecules 2015, 48, 1398–1403.
- 95A. Lv, Z.-L. Li, F.-S. Du, Z.-C. Li, Macromolecules 2014, 47, 7707–7716.
- 96
- 96aB. Guo, Y. Chen, Y. Lei, L. Zhang, W. Y. Zhou, A. B. M. Rabie, J. Zhao, Biomacromolecules 2011, 12, 1312–1321;
- 96bJ. Dai, S. Ma, Y. Wu, L. Han, L. Zhang, J. Zhu, X. Liu, Green Chem. 2015, 17, 2383–2392.
- 97J. Le Nôtre, S. C. M. Witte-van Dijk, J. van Haveren, E. L. Scott, J. P. M. Sanders, ChemSusChem 2014, 7, 2712–2720.
- 98M. Hartweg, C. R. Becer, Green Chem 2016, 18, 3272–3277.
- 99D. M. Alonso, S. G. Wettstein, J. A. Dumesic, Green Chem. 2013, 15, 584–595.
- 100M. Mascal, S. Dutta, I. Gandarias, Angew. Chem. Int. Ed. 2014, 53, 1854–1857;
Angew. Chem. 2014, 126, 1885–1888.
10.1002/ange.201308143 Google Scholar
- 101T. Chen, Z. Qin, Y. Qi, T. Deng, X. Ge, J. Wang, X. Hou, Polym. Chem. 2011, 2, 1190–1194.
- 102S. Raoufmoghaddam, M. T. M. Rood, F. K. W. Buijze, E. Drent, E. Bouwman, ChemSusChem 2014, 7, 1984–1990.