HSO2+ Formation from Ion-Molecule Reactions of SO2⋅+ with Water and Methane: Two Fast Reactions with Reverse Temperature-Dependent Kinetic Trend
Corresponding Author
Dr. Antonella Cartoni
Dipartimento di Chimica, Sapienza Università di Roma, Pl.e Aldo Moro 5, 00185 Roma, Italy
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, via Salaria Km 29,300, Monterotondo Scalo (RM), 00016 Italy
Search for more papers by this authorDr. Daniele Catone
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 2, via del Fosso del Cavaliere 10, 00133 Roma, Italy
Search for more papers by this authorDr. Paola Bolognesi
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, via Salaria Km 29,300, Monterotondo Scalo (RM), 00016 Italy
Search for more papers by this authorCorresponding Author
Dr. Mauro Satta
Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Dipartimento di Chimica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
Search for more papers by this authorDr. Pal Markus
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, via Salaria Km 29,300, Monterotondo Scalo (RM), 00016 Italy
Search for more papers by this authorDr. Lorenzo Avaldi
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, via Salaria Km 29,300, Monterotondo Scalo (RM), 00016 Italy
Search for more papers by this authorCorresponding Author
Dr. Antonella Cartoni
Dipartimento di Chimica, Sapienza Università di Roma, Pl.e Aldo Moro 5, 00185 Roma, Italy
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, via Salaria Km 29,300, Monterotondo Scalo (RM), 00016 Italy
Search for more papers by this authorDr. Daniele Catone
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 2, via del Fosso del Cavaliere 10, 00133 Roma, Italy
Search for more papers by this authorDr. Paola Bolognesi
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, via Salaria Km 29,300, Monterotondo Scalo (RM), 00016 Italy
Search for more papers by this authorCorresponding Author
Dr. Mauro Satta
Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Dipartimento di Chimica, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Roma, Italy
Search for more papers by this authorDr. Pal Markus
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, via Salaria Km 29,300, Monterotondo Scalo (RM), 00016 Italy
Search for more papers by this authorDr. Lorenzo Avaldi
Istituto di Struttura della Materia (ISM), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca di Roma 1, via Salaria Km 29,300, Monterotondo Scalo (RM), 00016 Italy
Search for more papers by this authorGraphical Abstract
Taking charge: The sulfur dioxide radical cation efficiently reacts with water and methane with opposite temperature-dependent kinetic trend. The experiments with tunable synchrotron radiation show only one product: HSO2+. Theory explains the results by means of the polar, spin and charge effects as well as structural reorganization occurring along the reaction coordinate.
Abstract
In this work an experimental and theoretical study on the formation of HSO2+ ion from the SO2⋅++CH4 and SO2⋅++H2O ion–molecule reactions at different temperatures is reported. Tunable synchrotron radiation was used to produce the SO2⋅+ ion in excited ro-vibrational levels of the ionic ground state X2A1 and mass spectrometry was employed to identify the product ions. Calculations in the frame of the density functional theory and variational transition state theory were combined to explore the dynamics of the reactions. The experimental results show that HSO2+ is the only product in both reactions. Its yield decreases monotonically with photon energy in the SO2⋅++H2O reaction, while it decreases at first and then increases in the SO2⋅++CH4 reaction. Theory confirms this trend by calculating the rate constants at different temperatures and explains the results by means of the polar, spin and charge effects as well as structural reorganization occurring in the reaction coordinate. The dynamic behavior observed in these two reactions is of general and fundamental interest. It can also provide some insights on the role of these reactions in astrochemistry as well as in their use as models for bond-activation reactions.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201700028-sup-0001-misc_information.pdf695.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Larsson, W. D. Geppert, G. Nyman, Rep. Prog. Phys. 2012, 75, 066901;
- 1bS. Petrie, D. K. Bohme, Mass Spectrom. Rev. 2007, 26, 258–280.
- 2
- 2aF. Lanucara, S. W. Holman, C. J. Gray, C. E. Eyers, Nat. Chem. 2014, 6, 281–294;
- 2bP. Markush, P. Bolognesi, A. Cartoni, P. Rousseau, S. Maclot, R. Delaunay, A. Domaracka, J. Kocisek, M. C. Castrovilli, B. A. Huber, L. Avaldi, Phys. Chem. Chem. Phys. 2016, 18, 16721–16729.
- 3
- 3aR. H. Crabtree, Chem. Rev. 1995, 95, 987–1007;
- 3bG. A. Olah, A. Goeppert, G. K. S. Prakash, J. Org. Chem. 2009, 74, 487–498;
- 3cG. A. Olah, Angew. Chem. Int. Ed. 2005, 44, 2636–2639;
Angew. Chem. 2005, 117, 2692–2696.
10.1002/ange.200462121 Google Scholar
- 4
- 4aV. G. Anicich, J. Phys. Chem. Ref. Data 1993, 22, 1469–1569;
- 4bV. G. Anicich, Astrophys. J. Suppl. Ser. 1993, 84, 215–315;
- 4cW. D. Geppert, M. Larsson, Chem. Rev. 2013, 113, 8872–8905;
- 4dG. A. Olah, T. Mathew, G. K. Surya Prakash, J. Am. Chem. Soc. 2016, 138, 6905–6911;
- 4eG. A. Olah. T. Mathew, G. K. Surya Prakash, G. Rasul, J. Am. Chem. Soc. 2016, 138, 1717–1722.
- 5
- 5aH. Schwarz, Angew. Chem. Int. Ed. 2011, 50, 10096–10115;
Angew. Chem. 2011, 123, 10276–10297;
10.1002/ange.201006424 Google Scholar
- 5bH. Schwarz, Angew. Chem. Int. Ed. 2015, 54, 10090–10100;
Angew. Chem. 2015, 127, 10228–10239;
10.1002/ange.201500649 Google Scholar
- 5cM. Zhou, R. H. Crabtree, Chem. Soc. Rev. 2011, 40, 1875–1884;
- 5dJ. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507–514.
- 6L. E. Snyder, J. M. Hollis, B. L. Ulich, F. J. Lovas, D. R. Johnson, D. Buhl, Astrophys. J. 1975, 198, L81–L84.
- 7
- 7aH. C. Huang, Y. J. Kuan, S. B. Charnley, N. Hirano, S. Takakuwa, T. L. Bourke, Adv. Space Res. 2005, 36, 146–155;
- 7bK. M. Menten, F. Wyrowski, A. Belloche, R. Güsten, L. Dedes, H. S. P. Müller, Astron. Astrophys. 2011, 525, A 77.
- 8
- 8aJ. B. Marquette, C. Rebrion, B. R. Rowe, Astron. Astrophys. 1989, 213, L 29–L32;
- 8bV. G. Anicich, Jr., W. T. Huntress, Astrophys. J. Suppl. Ser. 1986, 62, 553–672.
- 9V. Lattanzi, C. A. Gottlieb, P. Thaddeus, S. Thorwirth, M. C. McCarthy, Astron. Astrophys. 2011, 533, L11.
- 10
- 10aJ. H. Lacy, J. S. Carr, N. J. Evans, F. Baas, J. M. Achtermann, J. F. Arens, Astrophys. J. 1991, 376, 556–560;
- 10bA. C. Cheung, D. M. Rank, C. H. Townes, D. D. Thornton, W. J. Welch, Nature 1969, 221, 626–628.
- 11
- 11aV. N. Cavaliere, D. J. Mindiola, Chem. Sci. 2012, 3, 3356–3365;
- 11bZ. C. Wang, T. Weiske, R. Kretschmer, M. Schlangen, M. Kaupp, H. Schwarz, J. Am. Chem. Soc. 2011, 133, 16930–16937;
- 11cM. Yagi, M. Kaneko, Chem. Rev. 2001, 101, 21–35;
- 11dG. de Petris, A. Cartoni, A. Troiani, V. Barone, P. Cimino, G. Angelini, O. Ursini, Chem. Eur. J. 2010, 16, 6234–6242;
- 11eG. de Petris, A. Troiani, M. Rosi, G. Angelini, O. Ursini, Chem. Eur. J. 2009, 15, 4248–4252;
- 11fG. de Petris, A. Cartoni, A. Troiani, G. Angelini, O. Ursini, Phys. Chem. Chem. Phys. 2009, 11, 9976–9978.
- 12
- 12aJ. Li, X.-N. Wu, S. Zhou, S. Tang, M. Schlangen, H. Schwarz, Angew. Chem. Int. Ed. 2015, 54, 12298–12302;
Angew. Chem. 2015, 127, 12472–12477;
10.1002/ange.201503763 Google Scholar
- 12bJ. M. Mayer, Acc. Chem. Res. 2011, 44, 36–46;
- 12cJ. M. Mayer, Annu. Rev. Phys. Chem. 2004, 55, 363–390.
- 13
- 13aS. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255–263;
- 13bB. Ruscic, D. Feller, D. A. Dixon, K. A. Peterson, L. B. Harding, R. L. Asher, A. F. Wagner, J. Phys. Chem. A 2001, 105, 1–4;
- 13cB. Ruscic, M. Litorja, R. L. Asher, J. Phys. Chem. A 1999, 103, 8625–8633.
- 14D. G. Truhlar, B. C. Garrett, Annu. Rev. Phys. Chem. 1984, 35, 159–189.
- 15
- 15aY. X. Zhao, X. N. Li, Z. Yuan, Q. Y. Liu, Q. Shi, S. G. He, Chem. Sci. 2016, 7, 4730–4735;
- 15bX. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Science 2014, 344, 616–619.
- 16A. Derossi, F. Lama, M. Piacentini, T. Prosperi, N. Zema, Rev. Sci. Instrum. 1995, 66, 1718–1720.
- 17
- 17aW.-Z. Li, M.-B. Huang, B.-Z. Chen, J. Chem. Phys. 2004, 120, 4677–4682;
- 17bD. M. P. Holland, M. A. MacDonald, M. A. Hayes, P. Baltzer, L. Karlsson, M. Lundqvist, B. Wannberg, W. von Niessen, Chem. Phys. 1994, 188, 317–337;
- 17cL. Wang, Y. T. Lee, D. A. Shirley, J. Chem. Phys. 1987, 87, 2489–2497.
- 18B. Brehm, J. H. D. Eland, R. Frey, A. Küstler, Int. J. Mass Spectrom. Ion Phys. 1973, 12, 197–211.
- 19NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005 (Ed.: P. J. Linstrom, W. G. Mallard), National Institute of Standards and Technology, Gaithersburg MD, 20899; http://webbook.nist.gov.
- 20C. Lévêque, H. Köppel, R. Taïeb, J. Chem. Phys. 2014, 140, 204303.
- 21G. Dujardin, S. Leach, J. Chem. Phys. 1981, 75, 2521–2531.
- 22M. T. Bowers, Gas Phase Ion Chemistry, Vol. 1, Accademic Press, New York 1979.
- 23
- 23aF. A. Gianturco, M. Satta, M. Mendolicchio, F. Palazzetti, A. Piserchia, V. Barone, R. Wester, Astrophys. J. 2016, 830, 2;
- 23bF. Carelli, F. A. Gianturco, R. Wester, M. Satta, J. Chem. Phys. 2014, 141, 054302.
- 24
- 24aA. A. Fokin, P. R. Schreiner, Chem. Rev. 2002, 102, 1551–1593;
- 24bC. Isborn, D. A. Hrovat, W. T. Borden, J. M. Mayer, B. K. Carpenter, J. Am. Chem. Soc. 2005, 127, 5794–5795.
- 25N. E. Schultz, Y. Zhao, D. G. Truhlar, J. Phys. Chem. A 2005, 109, 4388–4403.
- 26
- 26aJ. J. Warren, T. A. Tronic, J. M. Mayer, Chem. Rev. 2010, 110, 6961–7001;
- 26bR. Amorati, A. Baschieri, G. Morroni, R. Gambino, L. Valgimigli, Chem. Eur. J. 2016, 22, 7924–7934;
- 26cD. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, T. J. Meyer, Chem. Rev. 2012, 112, 4016–4093.
- 27M. C. Castrovilli, P. Bolognesi, A. Cartoni, D. Catone, P. O'Keeffe, A. R. Casavola, S. Turchini, N. Zema, L. Avaldi, J. Am. Soc. Mass Spectrom. 2014, 25, 351–367.
- 28M. Satta, P. Bolognesi, A. Cartoni, A. R. Casavola, D. Catone, P. Markus, L. Avaldi, J. Chem. Phys. 2015, 143, 244312.
- 29
- 29aA. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652;
- 29bC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789;
- 29cS. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211;
- 29dP. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623–11627.
- 30
- 30aP. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213–222;
- 30bM. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654–3665.
- 31R. S. Mulliken, J. Chem. Phys. 1955, 23, 1833–1840.
- 32
- 32aA. E. Reed, R. B. Weinstock, F. Weinhold, J. Chem. Phys. 1985, 83, 735–746;
- 32bT. A. Manz, D. S. Sholl, J. Chem. Theory Comput. 2012, 8, 2844–2867.
- 33A. Fernández-Ramos, J. A. Miller, S. J. Klippenstein, D. G. Truhlar, Chem. Rev. 2006, 106, 4518–4584.
- 34T. Su, W. J. Chesnavich, J. Chem. Phys. 1982, 76, 5183–5185.
- 35Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.