Homometallic DyIII Complexes of Varying Nuclearity from 2 to 21: Synthesis, Structure, and Magnetism
Dr. Sourav Biswas
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorDr. Sourav Das
Department of Chemistry, Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026 India
Search for more papers by this authorJoydev Acharya
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorVierandra Kumar
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorDr. Jan van Leusen
Institut für Anorganische Chemie, RWTH Aachen University, 52074 Aachen, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Paul Kögerler
Institut für Anorganische Chemie, RWTH Aachen University, 52074 Aachen, Germany
Search for more papers by this authorJuan Manuel Herrera
Departamento de Química Inorganica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Enrique Colacio
Departamento de Química Inorganica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Vadapalli Chandrasekhar
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 India
National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar, 751 005 India
Search for more papers by this authorDr. Sourav Biswas
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorDr. Sourav Das
Department of Chemistry, Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026 India
Search for more papers by this authorJoydev Acharya
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorVierandra Kumar
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 India
Search for more papers by this authorDr. Jan van Leusen
Institut für Anorganische Chemie, RWTH Aachen University, 52074 Aachen, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Paul Kögerler
Institut für Anorganische Chemie, RWTH Aachen University, 52074 Aachen, Germany
Search for more papers by this authorJuan Manuel Herrera
Departamento de Química Inorganica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Enrique Colacio
Departamento de Química Inorganica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Vadapalli Chandrasekhar
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016 India
National Institute of Science Education and Research, Institute of Physics Campus, Sachivalaya Marg, Bhubaneswar, 751 005 India
Search for more papers by this authorGraphical Abstract
It′s complex: Utilization of a multidentate flexible aroyl hydrazine-based Schiff base ligand, 6-((bis(2-hydroxyethyl)amino)methyl)-N′-((8-hydroxyquinolin-2-yl)methylene)picolinohydrazide leads to formation of four complexes with {Dy2}, {Dy4}, {Dy6}, and {Dy21} metallic cores. Nuclearity is controlled by the successive deprotonation of the ligand in combination with judicious choice of co-ligands. Detailed static and dynamic magnetic properties of all the complexes reveal SMM characteristics for the {Dy2}, {Dy6}, and {Dy21} complexes.
Abstract
The synthesis, structure, and magnetic properties of four DyIII coordination compounds isolated as [Dy2(LH2)2(μ2-η1:η1-Piv)]Cl⋅2 MeOH⋅H2O (1), [Dy4(LH)2(μ3-OH)2(Piv)4(MeOH)2]⋅4 MeOH⋅2 H2O (2), [Dy6(LH2)3(tfa)3(O3PtBu)(Cl)3]Cl4⋅15.5 H2O⋅4 MeOH⋅5 CHCl3 (3) and [Dy21(L)7(LH)7(tfa)7]Cl7⋅15 H2O⋅7 MeOH⋅12 CHCl3 (4) are reported (Piv=pivalate, tfa=1,1,1-trifluoroacetylacetone, O3PtBu=tert-butylphosphonate). Among these, 3 displays an equilateral triangle topology with a side length of 9.541 Å and a rare pentagonal-bipyramidal Dy3+ environment, whereas complex 4 exhibits a single-stranded nanowheel structure with the highest nuclearity known for a homometallic lanthanide cluster structure. A tentative model of the dc magnetic susceptibility and the low-temperature magnetization of compounds 1 and 2 indicates that the former exhibits weak ferromagnetic intramolecular exchange interaction between the Dy3+ ions, whereas in the latter both intramolecular ferromagnetic and antiferromagnetic magnetic exchange interactions are present. Compounds 1, 3, and 4 exhibit frequency-dependent ac signals below 15 K at zero bias field, but without exhibiting any maximum above 2 K at frequencies up to 1400 Hz. The observed slow relaxation of the magnetization suggests that these compounds could exhibit single molecule magnet (SMM) behavior with either a thermal energy barrier for the reversal of the magnetization that is not high enough to block the magnetization above 2 K, or there exists quantum tunneling of the magnetization (QTM).
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201700471-sup-0001-misc_information.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 1993, 365, 141–143;
- 1bR. Sessoli, L. Hui, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, J. Am. Chem. Soc. 1993, 115, 1804–1816.
- 2
- 2aJ. Liu, Y.-C. Chen, J.-L. Liu, V. Vieru, L. Ungur, J.-H. Jia, L. F. Chibotaru, Y. Lan, W. Wernsdorfer, S. Gao, X.-M. Chen, M. L. Tong, J. Am. Chem. Soc. 2016, 138, 5441–5450;
- 2bY. C. Chen, J. L. Liu, L. Ungur, J. Liu, Q.-W. Li, L.-F. Wang, Z. Ping, L. F. Chibotaru, X.-M. Chen, M. L. Tong, J. Am. Chem. Soc. 2016, 138, 2829–2837;
- 2cR. Sato, K. Suzuki, T. Minato, M. Shinoe, K. Yamaguchi, N. Mizuno, Chem. Commun. 2015, 51, 4081–4084;
- 2dH. Ke, G.-F. Xu, Y.-N. Guo, P. Gamez, C. M. Beavers, S. J. Teat, J. Tang, Chem. Commun. 2010, 46, 6057–6059;
- 2eS. Das, A. Dey, S. Kundu, S. Biswas, R. S. Narayanan, S. T. Padilla, G. Lorusso, M. Evangelisti, E. Colacio, V. Chandrasekhar, Chem. Eur. J. 2015, 21, 16955–16967;
- 2fX. L. Li, J. Wu, J. Tang, B. L. Guennic, W. Shi, P. Cheng, Chem. Commun. 2016, 52, 9570–9573;
- 2gS. Biswas, S. Das, S. Hossain, A. K. Bar, J.-P. Sutter, V. Chandrasekhar, Eur. J. Inorg. Chem. 2016, 4683–4692.
- 3
- 3aS. K. Langley, D. P. Wielechowski, B. Moubaraki, K. S. Murray, Chem. Commun. 2016, 52, 10976–10979;
- 3bI. A. Kühne, V. Mereacre, C. E. Ansona, A. K. Powell, Chem. Commun. 2016, 52, 1021–1024;
- 3cE. Colacio, J. Ruiz, E. Ruiz, E. Cremades, J. Krzystek, S. Carretta, J. Cano, T. Guidi, W. Wernsdorfer, E. K. Brechin, Angew. Chem. Int. Ed. 2013, 52, 9130–9134;
Angew. Chem. 2013, 125, 9300–9304;
10.1002/ange.201304386 Google Scholar
- 3dX.-Q. Song, P.-P. Liu, Y.-A. Liu, J.-J. Zhou, X.-L. Wang, Dalton Trans. 2016, 45, 8154–8163;
- 3eH. Li, W. Shi, Z. Niu, J.-M. Zhou, G. Xiong, L.-L. Li, P. Cheng, Dalton Trans. 2015, 44, 468–471;
- 3fI. Oyarzabal, B. Artetxe, A. R. Diéguez, J. Á. García, J. M. Seco, E. Colacio, Dalton Trans. 2016, 45, 9712–9726;
- 3gP. Bag, A. Chakraborty, G. Rogez, V. Chandrasekhar, Inorg. Chem. 2014, 53, 6524–6533;
- 3hV. Chandrasekhar, P. Bag, M. Speldrich, J. van Leusen, P. Kögerler, Inorg. Chem. 2013, 52, 5035–5044;
- 3iS. Biswas, J. Goura, S. Das, C. V. Topping, J. Brambleby, P. A. Goddard, V. Chandrasekhar, Inorg. Chem. 2016, 55, 8422–8436;
- 3jS. She, Y. Li, W. Li, Dalton Trans. 2016, 45, 10830–10835;
- 3kS. G. Baca, J. van Leusen, M. Speldrich, P. Kögerler, Inorg. Chem. Front. 2016, 3, 1071–1075;
- 3lH. L. C. Feltham, S. Dhers, M. Rouzières, R. Clérac, A. K. Powell, S. Brooker, Inorg. Chem. Front. 2015, 2, 982–990;
- 3mP. Richardson, D. I. Alexandropoulos, L. C. Silva, G. Lorusso, M. Evangelisti, J. Tang, T. C. Stamatatos, Inorg. Chem. Front. 2015, 2, 945–948;
- 3nA. Amjad, A. M. Madalan, M. Andruh, A. Caneschi, L. Sorace, Chem. Eur. J. 2016, 22, 12849–12858;
- 3oM. J. Heras Ojea, V. A. Milway, G. Velmurugan, L. H. Thomas, S. J. Coles, C. Wilson, W. Wernsdorfer, G. Rajaraman, M. Murrie, Chem. Eur. J. 2016, 22, 12839–12848;
- 3pS. Biswas, H. S. Jena, A. Adhikary, S. Konar, Inorg. Chem. 2014, 53, 3926–3928.
- 4
- 4aV. Chandrasekhar, A. Dey, A. J. Mota, E. Colacio, Inorg. Chem. 2013, 52, 4554–4561;
- 4bD. W. Boukhvalov, V. V. Dobrovitski, P. Kögerler, M. Al-Saqer, M. Katsnelson, A. I. Lichtenstein, B. N. Harmon, Inorg. Chem. 2010, 49, 10902–10906;
- 4cF. Shao, B. Cahier, N. Guihery, E. Riviere, A. L. Barra, Y. Lan, W. Wernsdorfer, V. E. Campbell, T. Mallah, Chem. Commun. 2015, 51, 16475–16478;
- 4dA. K. Bar, C. Pichon, N. Gogoi, C. Duhayon, S. Ramaseshac, J. P. Sutter, Chem. Commun. 2015, 51, 3616–3619;
- 4eA. K. Bar, C. Pichona, J. P. Sutter, Coord. Chem. Rev. 2016, 308, 346–380;
- 4fA. S. Dinca, N. Candu, S. Shova, F. Lloret, M. Julve, V. I. Parvulescu, M. Andruh, RSC Adv. 2016, 6, 86569–86574;
- 4gP. S. Perlepe, L. C. Silva, V. Bekiari, K. J. Gagnon, S. J. Teat, A. Escuere, T. C. Stamatatos, Dalton Trans. 2016, 45, 10256–10270;
- 4hK. I. Alexopoulou, A. Terzis, C. P. Raptopoulou, V. Psycharis, A. Escuer, S. P. Perlepes, Inorg. Chem. 2015, 54, 5615–5617.
- 5
- 5aS. Biswas, S. Das, J. V. Leusen, P. Kögerler, V. Chandrasekhar, Dalton Trans. 2015, 44, 19282–19293;
- 5bJ. Goura, J. P. S. Walsh, F. Tuna, V. Chandrasekhar, Inorg. Chem. 2014, 53, 3385–3391;
- 5cS. Biswas, A. Mondal, S. Konar, Inorg. Chem. 2016, 55, 2085–2090;
- 5dA. Mondal, V. S. Parmar, S. Biswas, S. Konar, Dalton Trans. 2016, 45, 4548–4557;
- 5eA. J. Calahorro, I. Oyarzabal, B. Fernández, J. M. Seco, T. Tian, D. F. Jimenez, E. Colacio, A. R. -Diéguez, Dalton Trans. 2016, 45, 591–598;
- 5fS. Biswas, S. Das, G. Rogez, V. Chandrasekhar, Eur. J. Inorg. Chem. 2016, 3322–3329;
- 5gG. Brunet, F. Habib, I. Korobkov, M. Murugesu, Inorg. Chem. 2015, 54, 6195–6202;
- 5hL. Zhang, P. Zhang, L. Zhao, J. Wu, M. Guoa, J. Tang, Dalton Trans. 2016, 45, 10556–10562;
- 5iS. Das, A. Dey, S. Biswas, E. Colacio, V. Chandrasekhar, Inorg. Chem. 2014, 53, 3417–3426;
- 5jS. Das, S. Hossain, A. Dey, S. Biswas, J.-P. Sutter, V. Chandrasekhar, Inorg. Chem. 2014, 53, 5020–5028;
- 5kS. G. Reis, M. Briganti, D. O. T. A. Martins, H. Akpinar, S. Calancea, G. P. Guedes, S. Soriano, M. Andruh, R. A. A. Cassaro, P. M. Lahti, F. Totti, M. G. F. Vaz, Dalton Trans. 2016, 45, 2936–2944;
- 5lM. Andruh, Dalton Trans. 2015, 44, 16633–16653;
- 5mE. C. Mazarakioti, L. Cunha-Silva, V. Bekiari, A. Escuer, T. C. Stamatatos, RSC Adv. 2015, 5, 92534–92538;
- 5nZ.-M. Zhang, K. H. Zangana, A. K. Kostopoulos, M.-L. Tong, R. E. P. Winpenny, Dalton Trans. 2016, 45, 9041–9044;
- 5oE. M. Pineda, G. Lorusso, K. H. Zangana, E. Palacios, J. Schnack, M. Evangelisti, R. E. P. Winpenny, E. J. L. McInnes, Chem. Sci. 2016, 7, 4891–4895;
- 5pM. Gregson, N. F. Chilton, A.-M. Ariciu, F. Tuna, I. F. Crowe, W. Lewis, A. J. Blake, D. Collison, E. J. L. McInnes, R. E. P. Winpenny, S. T. Liddle, Chem. Sci. 2016, 7, 155–165;
- 5qC. Das, S. Vaidya, T. Gupta, J. M. Frost, M. Righi, E. K. Brechin, M. Affronte, G. Rajaraman, M. Shanmugam, Chem. Eur. J. 2015, 21, 15639–15650;
- 5rS. K. Singh, M. F. Beg, G. Rajaraman, Chem. Eur. J. 2016, 22, 672–680;
- 5sS. K. Gupta, A. Dar, T. Rajeshkumar, S. Kuppuswamy, S. K. Langley, K. S. Murray, G. Rajaraman, R. Murugavel, Dalton Trans. 2015, 44, 5961–5965;
- 5tS. K. Gupta, T. Rajeshkumar, G. Rajaraman, R. Murugavel, Chem. Sci. 2016, 7, 5181–5191.
- 6
- 6aS. K. Langley, D. P. Wielechowski, V. Vieru, N. F. Chilton, B. Moubaraki, L. F. Chibotaru, K. S. Murray, Chem. Commun. 2015, 51, 2044–2047;
- 6bY. Zheng, Y.-Y. Pan, Y.-P. Ren, L.-S. Long, R.-B. Huang, L.-S. Zheng, Chem. Commun. 2014, 50, 14728–14731;
- 6cK. S. Pedersen, J. Bendix, R. Clérac, Chem. Commun. 2014, 50, 4396–4415;
- 6dX. Y. Wang, C. Avendanoa, K. R. Dunbar, Chem. Soc. Rev. 2011, 40, 3213–3238.
- 7
- 7aL. Chatelain, F. Tuna, J. Pécaut, M. Mazzanti, Chem. Commun. 2015, 51, 11309–11312;
- 7bV. Mougel, L. Chatelain, J. Hermle, R. Caciuffo, E. Colineau, F. Tuna, N. Magnani, A. de Geyer, J. Pécaut, M. Mazzanti, Angew. Chem. Int. Ed. 2014, 53, 819–823;
Angew. Chem. 2014, 126, 838–842;
10.1002/ange.201307366 Google Scholar
- 7cF. Moro, D. P. Mills, S. T. Liddle, J. van Slageren, Angew. Chem. Int. Ed. 2013, 52, 3430–3433;
Angew. Chem. 2013, 125, 3514–3517;
10.1002/ange.201208015 Google Scholar
- 7dM. A. Antunes, L. C. J. Pereira, I. C. Santos, M. Mazzanti, J. Marçalo, M. Almeida, Inorg. Chem. 2011, 50, 9915–9917;
- 7eJ. T. Coutinho, M. A. Antunes, L. C. J. Pereira, H. Bolvin, J. Marçalo, M. Mazzanti, M. Almeida, Dalton Trans. 2012, 41, 13568–13571;
- 7fN. Magnani, E. Colineau, R. Eloirdi, J.-C. Griveau, R. Caciuffo, S. M. Cornet, I. May, C. A. Sharrad, D. Collison, R. E. P. Winpenny, Phys. Rev. Lett. 2010, 104, 197202–197208.
- 8D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, 2006.
- 9
- 9aL. Zhang, P. Zhang, L. Zhao, S.-Y. Lin, S. Xue, J. Tang, Z. Liu, Eur. J. Inorg. Chem. 2013, 1351–1357;
- 9bR. J. Blagg, L. Ungur, F. Tuna, J. Speak, P. Comar, D. Collison, W. Wernsdorfer, E. J. L. McInnes, L. F. Chibotaru, R. E. P. Winpenny, Nat. Chem. 2013, 5, 673–678;
- 9cJ. Wu, L. Zhao, M. Guo, J. Tang, Chem. Commun. 2015, 51, 17317–17320;
- 9dS. Biswas, S. Das, J. V. Leusen, P. Kögerler, V. Chandrasekhar, Eur. J. Inorg. Chem. 2014, 2014, 4159–4167;
- 9eV. Chandrasekhar, S. Das, A. Dey, S. Hossain, J.-P. Sutter, Inorg. Chem. 2013, 52, 11956–11965.
- 10
- 10aP. Zhang, L. Zhang, S.-Y. Lin, J. Tang, Inorg. Chem. 2013, 52, 6595–6602;
- 10bN. Guo, X.-H. Chen, S. Xue, J. Tang, Inorg. Chem. 2012, 51, 4035–4042;
- 10cG. M. Liang, Q.-L. Ni, H.-H. Zou, L.-C. Gui, X.-J. Wang, Chem. Commun. 2016, 52, 5293–5296;
- 10dN. J. Yutronkie, I. A. Kühne, I. Korobkov, J. L. Brusso, M. Murugesu, Chem. Commun. 2016, 52, 677–680;
- 10eA. A. Athanasopoulou, M. Pilkington, C. P. Raptopoulou, A. Escuer, T. C. Stamatatos, Chem. Commun. 2014, 50, 14942–14945;
- 10fH. Tian, L. Zhao, H. Lin, J. Tang, G. Li, Chem. Eur. J. 2013, 19, 13235–13241;
- 10gC. Aronica, G. Chastanet, G. Pilet, B. L. Guennic, V. Robert, W. Wernsdorfer, D. Luneau, Inorg. Chem. 2007, 46, 6108–6119.
- 11
- 11aH. Tian, M. Wang, L. Zhao, Y. Guo, J. Tang, Z. Liu, Chem. Eur. J. 2012, 18, 442–445;
- 11bS.-Y. Lin, W. Wernsdorfer, L. Ungur, A. K. Powell, Y.-N. Guo, J. Tang, L. Zhao, L. F. Chibotaru, H.-J. Zhang, Angew. Chem. Int. Ed. 2012, 51, 12767–12771;
Angew. Chem. 2012, 124, 12939–12943;
10.1002/ange.201206602 Google Scholar
- 11cI. J. Hewitt, J. Tang, N. T. Madhu, C. E. Y. Anson, J. Lan, M. Luzon, R. Etienne, A. K. Sessoli, Angew. Chem. Int. Ed. 2010, 49, 6352–6356;
Angew. Chem. 2010, 122, 6496–6500;
10.1002/ange.201002691 Google Scholar
- 11dH. Ke, L. Zhao, Y. Guo, J. Tang, Eur. J. Inorg. Chem. 2011, 2011, 4153–4156;
- 11eS. Liao, X. Yang, R. A. Jones, Cryst. Growth Des. 2012, 12, 970–974;
- 11fX. L. Li, H. Li, D.-M. Chen, C. Wang, J. Wu, J. Tang, W. Shi, P. Cheng, Dalton Trans. 2015, 44, 20316–20320;
- 11gB. Joarder, S. Mukherjee, S. Xue, J. Tang, S. K. Ghosh, Inorg. Chem. 2014, 53, 7554–7560.
- 12
- 12aI. L. Malaestean, A. Ellern, S. Baca, P. Kögerler, Chem. Commun. 2012, 48, 1499–1503;
- 12bL. X. Chang, G. Xiong, L. Wang, P. Cheng, B. Zhao, Chem. Commun. 2013, 49, 1055–1057;
- 12cX. J. Gu, D. F. Xue, Inorg. Chem. 2007, 46, 3212–3216;
- 12dX.-Y. Zheng, J.-B. Peng, X. J. Kong, L.-S. Long, L.-S. Zheng, Inorg. Chem. Front. 2016, 3, 320–325;
- 12eM. Romanelli, G. A. Kumar, T. J. Emge, R. E. Riman, J. G. Brennan, Angew. Chem. Int. Ed. 2008, 47, 6049–6051;
Angew. Chem. 2008, 120, 6138–6140;
10.1002/ange.200801530 Google Scholar
- 12fX. Gu, R. Clérac, A. Houri, D. Xue, Inorg. Chim. Acta 2008, 361, 3873–3876.
- 13K. Wang, Z.-L. Chen, H.-H. Zou, K. Hu, H.-Y. Li, Z. Zhang, W.-Y. Sun, F. P. Liang, Chem. Commun. 2016, 52, 8297–8300.
- 14H. Lueken, Magnetochemie, Teubner, Stuttgart, 1999.
10.1007/978-3-322-80118-0 Google Scholar
- 15
- 15aM. Speldrich, H. Schilder, H. Lueken, P. Kögerler, Isr. J. Chem. 2011, 51, 215–227;
- 15bJ. van Leusen, M. Speldrich, H. Schilder, P. Kögerler, Coord. Chem. Rev. 2015, 289–290, 137–148.
- 16
- 16aM. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez, SHAPE 2.0, Universitat de Barcelona, Barcelona, 2010;
- 16bS. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell, D. Avnir, Coord. Chem. Rev. 2005, 249, 1693–1708.
- 17
- 17aJ. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, Cambridge, 1971;
- 17bE. U. Condon, G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, Cambridge, 1951.
- 18K. S. Cole, R. H. Cole, J. Chem. Phys. 1941, 9, 341–351.
- 19
- 19aD. N. Woodruff, R. E. P. Winpenny, R. A. Layfield, Chem. Rev. 2013, 113, 5110–5148;
- 19bP. Zhang, Y.-N. Guo, J. Tang, Coord. Chem. Rev. 2013, 257, 1728–1735;
- 19c Lanthanides and Actinides in Molecular Magnetism (Eds.: ), Wiley-VCH, Weinheim, 2015;
- 19dJ. Tang, P. Zhang, Lanthanide Single Molecule Magnets, Springer, Berlin, 2015.
10.1007/978-3-662-46999-6 Google Scholar
- 20
- 20aJ. Ruiz, A. J. Mota, A. Rodríguez-Diéguez, S. Titos, J. M. Herrera, E. Ruiz, E. Cremades, J. P. Costes, E. Colacio, Chem. Commun. 2012, 48, 7916–7918;
- 20bH. L. C. Feltham, Y. Lan, F. Klöwer, L. Ungur, L. F. Chibotaru, A. K. Powell, S. Brooker, Chem. Eur. J. 2011, 17, 4362–4365;
- 20cY. Bi, Y.-N. Guo, L. Zhao, Y. Guo, S.-Y. Lin, S. D. Jiang, J. Tang, B. W. Wang, S. Gao, Chem. Eur. J. 2011, 17, 12476–12481 and references therein.
- 21
- 21a Vogel's Textbook of Practical Organic Chemistry, 5th ed. ), Prentice Hall, London, 1989;
- 21bD. B. G. Williams, M. Lawton, J. Org. Chem. 2010, 75, 8351–8354;
- 21cX. Zeng, D. Coquiére, A. Alenda, E. Garrier, T. Prangé, Y. Li, O. Reinaud, I. Jabin, Chem. Eur. J. 2006, 12, 6393–6402.
- 22P. C. Crofts, G. M. Kosolapoff, J. Am. Chem. Soc. 1953, 75, 3379–3383.
- 23
- 23aSMART & SAINT Software Reference manuals, Version 6.45; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2003;
- 23bG. M. Sheldrick, SADABS, a software for empirical absorption correction, Ver. 2.05; University of Göttingen: Göttingen, Germany, 2002;
- 23cSHELXTL Reference Manual, Ver. 6.1; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 2000;
- 23dG. M. Sheldrick, SHELXTL, Ver. 6.12; Bruker AXS Inc.: WI. Madison, 2001;
- 23eG. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122;
- 23fO. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341;
- 23gK. Brandenburg, Diamond, Ver. 3.1e; Crystal Impact GbR: Bonn, Germany, 2005.