Photoisomerization of Bis(tridentate) 2,6-Bis(1H-pyrazol-1-yl)pyridine Ligands Exhibiting a Multi-anthracene Skeleton
Corresponding Author
Prof. Ivan Šalitroš
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 81237 Slovak Republic
Search for more papers by this authorDr. Olaf Fuhr
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Karlsruhe Nano-Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorProf. Miroslav Gál
Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 81237 Slovak Republic
Search for more papers by this authorDr. Michal Valášek
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorCorresponding Author
Prof. Mario Ruben
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
Search for more papers by this authorCorresponding Author
Prof. Ivan Šalitroš
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 81237 Slovak Republic
Search for more papers by this authorDr. Olaf Fuhr
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Karlsruhe Nano-Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorProf. Miroslav Gál
Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 81237 Slovak Republic
Search for more papers by this authorDr. Michal Valášek
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorCorresponding Author
Prof. Mario Ruben
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
Search for more papers by this authorGraphical Abstract
Switch it: Novel 2,6-bis(1H-pyrazol-1-yl)pyridine ligands exhibiting a photoisomerizable multi-anthracene skeleton were prepared (see figure). All synthesized ligands and the corresponding photoisomers were structurally characterized and their spectral, optical, and electrochemical properties were studied in detail.
Abstract
A novel molecular design is described where two peripheral moieties made of 2,6-bis(1H-pyrazol-1-yl)pyridine are linked through multi-1,8-diethynylanthracene moieties. The optimized synthesis of the three isostructural analogues 1 a, 1 b, and 1 c, containing the anthraquinone, anthracene, and 10-methoxyanthracene units, respectively, is reported. The resulting spatial face-to-face arrangement of the peripheral anthracene rings enables to trigger the intramolecular [4+4] photocycloaddition affording the isomers P1 b and P1 c, which can be thermally cleaved back to the original anthracene derivatives 1 b and 1 c, respectively. Single-crystal X-ray diffraction studies confirm the expected molecular structures of compounds 1 a–1 c as well as of their corresponding isomers P1 b and P1 c. The spectral, optical, and electrochemical properties of all synthesized compounds are investigated and discussed.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201700825-sup-0001-misc_information.pdf2.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K. Ogura, Nature 1995, 378, 469–471.
- 2J. M. Lehn, Science 2002, 295, 2400–2403.
- 3O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714.
- 4M. Ruben, U. Ziener, J. M. Lehn, V. Ksenofontov, P. Gütlich, G. B. M. Vaughan, Chem. Eur. J. 2005, 11, 94–100.
- 5 Spin Crossover in Transition Metal Compounds, in Top. Curr. Chem., Vol. 233–235 (Eds.: ), Springer, Berlin/Heidelberg, 2004.
- 6 Spin-Crossover Materials: Properties and Applications (Ed. ), Wiley, New York, 2013.
- 7E. Coronado, B. S. Tsukerblat, R. Georges, Molecular Magnetism: From Molecular Assemblies to the Devices (Eds.: ), Kluwer, Dordrecht, 1996.
10.1007/978-94-017-2319-0 Google Scholar
- 8I. Nemec, R. Marx, R. Herchel, P. Neugebauer, J. van Slageren, Z. Travnicek, Dalton Trans. 2015, 44, 15014–15021.
- 9O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem. Int. Ed. 2007, 46, 2152–2187;
Angew. Chem. 2007, 119, 2200–2236.
10.1002/ange.200602205 Google Scholar
- 10J.-F. Létard, P. Guionneau, O. Nguyen, J. S. Costa, S. Marcén, G. Chastanet, M. Marchivie, L. Goux-Capes, Chem. Eur. J. 2005, 11, 4582–4589.
- 11M.-L. Boillot, C. Roux, J.-P. Audiere, A. Dausse, J. Zarembowitch, Inorg. Chem. 1996, 35, 3975–3980.
- 12M.-L. Boillot, S. Pillet, A. Tissot, E. Riviere, N. Claiser, C. Lecomte, Inorg. Chem. 2009, 48, 4729–4736.
- 13A. Bannwarth, S. O. Schmidt, G. Peters, F. D. Sönnichsen, W. Thimm, R. Herges, F. Tuczek, Eur. J. Inorg. Chem. 2012, 2776–2783.
- 14A. Sour, M.-L. Boillot, E. Riviere, P. Lesot, Eur. J. Inorg. Chem. 1999, 2117–2119.
10.1002/(SICI)1099-0682(199912)1999:12<2117::AID-EJIC2117>3.0.CO;2-P CASWeb of Science®Google Scholar
- 15M.-L. Boillot, S. Chantraine, J. Zarembowitch, J.-Y. Lallemand, J. Prunet, New J. Chem. 1999, 23, 179–184.
- 16M. Castellano, J. Ferrando-Soria, E. Pardo, M. Julve, F. Lloret, C. Mathoniere, J. Pasán, C. Ruiz-Pérez, L. Canadillas-Delgado, R. Ruiz-García, J. Cano, Chem. Commun. 2011, 47, 11035–10983.
- 17Y. Ishida, A. S. Achalkumar, S. Kato, Y. Kai, A. Misawa, Y. Hayashi, K. Yamada, Y. Matsuoka, M. Shiro, K. Saigo, J. Am. Chem. Soc. 2010, 132, 17435–17466.
- 18C. Yang, C. Ke, W. Liang, G. Fukuhara, T. Mori, Y. Liu, Y. Inoue, J. Am. Chem. Soc. 2011, 133, 13786–13789.
- 19E. R. Thapaliya, B. Captain, F. M. Raymo, J. Org. Chem. 2014, 79, 3973–3981.
- 20H.-D. Becker, Chem. Rev. 1993, 93, 145–172.
- 21H. Bouas-Laurent, A. Castellan, J.-P. Desvergne, R. Lapouyade, Chem. Soc. Rev. 2000, 29, 43–55.
- 22H. Bouas-Laurent, A. Castellan, J.-P. Desvergne, R. Lapouyade, Chem. Soc. Rev. 2001, 30, 248–263.
- 23M. Servalli, L. Gyr, J. Sakamoto, A. D. Schlüter, Eur. J. Org. Chem. 2015, 4519–4523.
- 24M. Li, F. G. Klärner, J. Sakamoto, A. D. Schlüter, Chem. Eur. J. 2013, 19, 13348–13354.
- 25M. Li, A. D. Schlüter, J. Sakamoto, J. Am. Chem. Soc. 2012, 134, 11721–11725.
- 26P. Kissel, R. Erni, W. B. Schweizer, M. D. Rossell, B. T. King, T. Bauer, S. Götzinger, A. D. Schlüter, J. Sakamoto, Nat. Chem. 2012, 4, 287–291.
- 27M. J. Kory, M. Wörle, T. Weber, P. Payamyar, S. W. van de Poll, J. Dshemuchadse, N. Trapp, A. D. Schlüter, Nat. Chem. 2014, 6, 779–784.
- 28P. Kissel, D. J. Murray, W. J. Wulftange, V. J. Catalano, B. T. King, Nat. Chem. 2014, 6, 774–778.
- 29I. Šalitroš, O. Fuhr, R. Kruk, J. Pavlik, L. Pogány, B. Schäfer, M. Tatarko, R. Boča, W. Linert, M. Ruben, Eur. J. Inorg. Chem. 2013, 1049–1057.
- 30I. Šalitroš, L. Pogány, M. Ruben, R. Boča, W. Linert, Dalton Trans. 2014, 43, 16584–16587.
- 31I. Šalitroš, N. T. Madhu, R. Boča, J. Pavlik, M. Ruben, Monatsh. Chem. 2009, 140, 695–733.
- 32N. T. Madhu, I. Salitros, F. Schramm, S. Klyatskaya, O. Fuhr, M. Ruben, C. R. Chim. 2008, 11, 1166–1174.
- 33M. A. Halcrow, Coord. Chem. Rev. 2009, 253, 2493–2514.
- 34V. A. Money, J. S. Costa, S. Marcén, G. Chastanet, J. Elhaik, M. A. Halcrow, J. A. K. Howard, J.-F. Létard, Chem. Phys. Lett. 2004, 391, 273–277.
- 35J. M. Lovell, J. A. Joule, Synth. Commun. 1997, 27, 1209–1212.
- 36X. Bu, L. W. Deady, G. J. Finlay, B. C. Baguley, W. A. Denny, J. Med. Chem. 2001, 44, 2004–2014.
- 37I. Salitros, O. Fuhr, A. Eichhofer, R. Kruk, J. Pavlik, L. Dlhan, R. Boca, M. Ruben, Dalton Trans. 2012, 41, 5163–5171.
- 38O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- 39G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122.
- 40G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8.
- 41U. S. Schubert, H. Hofmeier, G. R. Newkome, Modern Terpyridine Chemistry, Wiley-VCH, Weinheim, 2006.
10.1002/3527608486 Google Scholar
- 42A. Wild, A. Winter, F. Schlütter, U. S. Schubert, Chem. Soc. Rev. 2011, 40, 1459–1511.
- 43M. Ruben, E. Breuning, J.-M. Lehn, V. Ksenofontov, F. Renz, P. Gütlich, G. B. M. Vaughan, Chem. Eur. J. 2003, 9, 4422–4429.
- 44E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Gütlich, E. Wegelius, K. Rissanen, Angew. Chem. Int. Ed. 2000, 39, 2504–2507;
10.1002/1521-3773(20000717)39:14<2504::AID-ANIE2504>3.0.CO;2-B CASPubMedWeb of Science®Google ScholarAngew. Chem. 2000, 112, 2563–2566.10.1002/1521-3757(20000717)112:14<2563::AID-ANGE2563>3.0.CO;2-# Google Scholar
- 45T. Matsumoto, G. N. Newton, T. Shiga, S. Hayami, Y. Matsui, H. Okamoto, R. Kumai, Y. Murakami, H. Oshio, Nat. Commun. 2014, 5, 3865–3868.
- 46B. Schäfer, J.-F. Greisch, I. Faus, T. Bodenstein, I. Šalitroš, O. Fuhr, K. Fink, V. Schünemann, M. M. Kappes, M. Ruben, Angew. Chem. Int. Ed. 2016, 55, 10881–10885;
Angew. Chem. 2016, 128, 11040–11044.
10.1002/ange.201603916 Google Scholar
- 47M. Goichi, K. Segawa, S. Suzuki, S. Toyota, Synthesis 2005, 2116–2119.