Direct Evidence for the Origin of Bis-Gold Intermediates: Probing Gold Catalysis with Mass Spectrometry
Mei Lu
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorDr. Yijin Su
Department of Chemistry, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorPengyi Zhao
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorDr. Xiaohan Ye
Department of Chemistry, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorYi Cai
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorCorresponding Author
Prof. Xiaodong Shi
Department of Chemistry, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorCorresponding Author
Prof. Eric Masson
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorFengyao Li
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorJ. Larry Campbell
AB Sciex, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 Canada
Search for more papers by this authorCorresponding Author
Prof. Hao Chen
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorMei Lu
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorDr. Yijin Su
Department of Chemistry, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorPengyi Zhao
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorDr. Xiaohan Ye
Department of Chemistry, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorYi Cai
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorCorresponding Author
Prof. Xiaodong Shi
Department of Chemistry, University of South Florida, Tampa, FL, 33620 USA
Search for more papers by this authorCorresponding Author
Prof. Eric Masson
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorFengyao Li
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorJ. Larry Campbell
AB Sciex, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 Canada
Search for more papers by this authorCorresponding Author
Prof. Hao Chen
Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry & Edison Institute of Biology, Ohio University, Athens, OH, 45701 USA
Search for more papers by this authorGraphical Abstract
Going for gold: Gold-catalyzed alkyne hydration was studied by using in situ reacting mass spectrometry (MS) technology. By monitoring the reaction process in solution under different conditions and examining the reaction occurrence in the early reaction stage, experimental evidence to support that the bis-gold complex is a crucial reaction intermediate was collected (see scheme).
Abstract
Gold-catalyzed alkyne hydration was studied by using in situ reacting mass spectrometry (MS) technology. By monitoring the reaction process in solution under different conditions (regular and very diluted catalyst concentrations, different pH values) and examining the reaction occurrence in the early reaction stage (1–2 ms after mixing) with MS, we collected a series of experimental evidence to support that the bis-gold complex is a potential key reaction intermediate. Furthermore, both experimental and computational studies confirmed that the σ,π-bis-gold complexes are not active intermediates toward nucleophilic addition. Instead, formation of geminally diaurated complex C is crucial for this catalytic process.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201703666-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896–7936; Angew. Chem. 2006, 118, 8064–8105;
- 1bL. Zhang, J. Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271–2296;
- 1cR. A. Widenhoefer, X. Q. Han, Eur. J. Org. Chem. 2006, 4555–4563;
- 1dA. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410–3449; Angew. Chem. 2007, 119, 3478–3519;
- 1eA. Arcadi, Chem. Rev. 2008, 108, 3266–3325;
- 1fD. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev. 2008, 108, 3351–3378;
- 1gE. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326–3350;
- 1hR. A. Widenhoefer, Chem. Eur. J. 2008, 14, 5382–5391;
- 1iS. Sengupta, X. D. Shi, ChemCatChem 2010, 2, 609–619;
- 1jP. Garcia, M. Malacria, C. Aubert, V. Gandon, L. Fensterbank, ChemCatChem 2010, 2, 493–497;
- 1kT. de Haro, C. Nevado, Synthesis 2011, 2530–2539;
- 1lH. A. Wegner, M. Auzias, Angew. Chem. Int. Ed. 2011, 50, 8236–8237;
Angew. Chem. 2011, 123, 8386–8397;
10.1002/ange.201101603 Google Scholar
- 1mA. S. K. Hashmi, F. D. Toste, Modern Gold-Catalyzed Synthesis, Wiley-VCH, Weinheim, 2012;
10.1002/9783527646869 Google Scholar
- 1nM. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448–2462;
- 1oR. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028–9072;
- 1pW. W. Zi, F. D. Toste, Chem. Soc. Rev. 2016, 45, 4567–4589;
- 1qD. Pflästerer, A. S. K. Hashmi, Chem. Soc. Rev. 2016, 45, 1331–1367.
- 2
- 2aD. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403;
- 2bW. Wang, G. B. Hammond, B. Xu, J. Am. Chem. Soc. 2012, 134, 5697–5705;
- 2cL.-P. Liu, G. B. Hammond, Chem. Soc. Rev. 2012, 41, 3129–3139;
- 2dA. S. K. Hashmi, Angew. Chem. Int. Ed. 2010, 49, 5232–5241;
Angew. Chem. 2010, 122, 5360–5369;
10.1002/ange.200907078 Google Scholar
- 2eA. Gómez-Suárez, S. P. Nolan, Angew. Chem. Int. Ed. 2012, 51, 8156–8159;
Angew. Chem. 2012, 124, 8278–8281;
10.1002/ange.201203587 Google Scholar
- 2fB. Ranieri, I. Escofet, A. M. Echavarren, Org. Biomol. Chem. 2015, 13, 7103–7108;
- 2gA. S. K. Hashmi, M. Rudolph, J. P. Weyrauch, M. Wolfle, W. Frey, J. W. Bats, Angew. Chem. Int. Ed. 2005, 44, 2798–2801; Angew. Chem. 2005, 117, 2858–2861.
- 3
- 3aP. Schulte, U. Behrens, Chem. Commun. 1998, 1633–1634;
- 3bV. Lavallo, G. D. Frey, S. Kousar, B. Donnadieu, G. Bertrand, Proc. Natl. Acad. Sci. USA 2007, 104, 13569–13573;
- 3cN. D. Shapiro, F. D. Toste, Proc. Natl. Acad. Sci. USA 2008, 105, 2779–2782;
- 3dJ. Wu, P. Kroll, H. V. R. Dias, Inorg. Chem. 2009, 48, 423–425;
- 3eH. V. R. Dias, J. A. Flores, J. Wu, P. Kroll, J. Am. Chem. Soc. 2009, 131, 11249–11255;
- 3fA. S. K. Hashmi, A. M. Schuster, S. Gaillard, L. Cavallo, A. Poater, S. P. Nolan, Organometallics 2011, 30, 6328–6337;
- 3gG. Ciancaleoni, L. Biasiolo, G. Bistoni, A. Macchioni, F. Tarantelli, D. Zuccaccia, L. Belpassi, Organometallics 2013, 32, 4444–4447;
- 3hM. Pernpointner, A. S. K. Hashmi, J. Chem. Theory Comput. 2009, 5, 2717–2725.
- 4
- 4aL.-P. Liu, B. Xu, M. S. Mashuta, G. B. Hammond, J. Am. Chem. Soc. 2008, 130, 17642–17643;
- 4bA. S. K. Hashmi, A. M. Schuster, F. Rominger, Angew. Chem. Int. Ed. 2009, 48, 8247–8249;
Angew. Chem. 2009, 121, 8396–8398;
10.1002/ange.200903134 Google Scholar
- 4cY. Chen, D. Wang, J. L. Petersen, N. G. Akhmedov, X. Shi, Chem. Commun. 2010, 46, 6147–6149;
- 4dY. Zhu, B. Yu, Angew. Chem. Int. Ed. 2011, 50, 8329–8332;
Angew. Chem. 2011, 123, 8479–8482;
10.1002/ange.201103409 Google Scholar
- 4eR. L. LaLonde, J. W. E. Brenzovich, D. Benitez, E. Tkatchouk, K. Kelley, W. A. Goddard, F. D. Toste, Chem. Sci. 2010, 1, 226–233;
- 4fM. Melchionna, M. Nieger, J. Helaja, Chem. Eur. J. 2010, 16, 8262–8267;
- 4gD. Zhu, X. Cao, B. Yu, Org. Chem. Front. 2015, 2, 360–365;
- 4hM. Wieteck, M. H. Vilhelmsen, P. Nosel, J. Schulmeister, F. Rominger, M. Rudolph, M. Pernpointner, A. S. K. Hashmi, Adv. Synth. Catal. 2016, 358, 1449–1462;
- 4iA. S. K. Hashmi, T. D. Ramanurthi, F. Rominger, Adv. Synth. Catal. 2010, 352, 971–975.
- 5
- 5aD. Weber, M. R. Gagné, Org. Lett. 2009, 11, 4962–4965;
- 5bD. Weber, M. A. Tarselli, M. R. Gagné, Angew. Chem. Int. Ed. 2009, 48, 5733–5736;
Angew. Chem. 2009, 121, 5843–5846;
10.1002/ange.200902049 Google Scholar
- 5cT. J. Brown, D. Weber, M. R. Gagné, R. A. Widenhoefer, J. Am. Chem. Soc. 2012, 134, 9134–9137;
- 5dD. Weber, M. R. Gagne, Chem. Sci. 2013, 4, 335–338.
- 6
- 6aG. Seidel, C. W. Lehmann, A. Fürstner, Angew. Chem. Int. Ed. 2010, 49, 8466–8470;
Angew. Chem. 2010, 122, 8644–8648;
10.1002/ange.201003349 Google Scholar
- 6bA. S. K. Hashmi, I. Braun, P. Nösel, J. Schädlich, M. Wieteck, M. Rudolph, F. Rominger, Angew. Chem. Int. Ed. 2012, 51, 4456–4460;
Angew. Chem. 2012, 124, 4532–4536;
10.1002/ange.201109183 Google Scholar
- 6cA. S. K. Hashmi, M. Wieteck, I. Braun, P. Nösel, L. Jongbloed, M. Rudolph, F. Rominger, Adv. Synth. Catal. 2012, 354, 555–562;
- 6dA. S. K. Hashmi, I. Braun, M. Rudolph, F. Rominger, Organometallics 2012, 31, 644–661;
- 6eA. S. K. Hashmi, Acc. Chem. Res. 2014, 47, 864;
- 6fJ. Wang, S. Lv, H. Chen, M. Shi, J. Zhang, Dalton Trans. 2016, 45, 17091–17094;
- 6gM. H. Larsen, K. N. Houk, A. S. K. Hashmi, J. Am. Chem. Soc. 2015, 137, 10668–10676;
- 6hM. H. Vilhelmsen, A. S. K. Hashmi, Chem. Eur. J. 2014, 20, 1901–1908.
- 7For a review, see:
- 7aR. E. M. Brooner, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2013, 52, 11714–11724; Angew. Chem. 2013, 125, 11930–11941; for selected examples, see:
- 7bT. N. Hooper, M. Green, C. A. Russell, Chem. Commun. 2010, 46, 2313–2315;
- 7cA. Simonneau, F. Jaroschik, D. Lesage, M. Karanik, R. Guillot, M. Malacria, J.-C. Tabet, J.-P. Goddard, L. Fensterbank, V. Gandon, Y. Gimbert, Chem. Sci. 2011, 2, 2417–2422;
- 7dA. Grirrane, H. Garcia, A. Corma, E. Álvarez, ACS Catal. 2011, 1, 1647–1653;
- 7eA. Himmelspach, M. Finze, S. Raub, Angew. Chem. Int. Ed. 2011, 50, 2628–2631; Angew. Chem. 2011, 123, 2676–2679;
- 7fA. Gómez-Suárez, S. Dupuy, A. M. Z. Slawin, S. P. Nolan, Angew. Chem. Int. Ed. 2013, 52, 938–942;
Angew. Chem. 2013, 125, 972–976;
10.1002/ange.201208234 Google Scholar
- 7gA. Grirrane, H. Garcia, A. Corma, E. Álvarez, Chem. Eur. J. 2013, 19, 12239–12244;
- 7hA. S. K. Hashmi, T. Lauterbach, P. Nösel, M. H. Vilhelmsen, M. Rudolph, F. Rominger, Chem. Eur. J. 2013, 19, 1058–1065.
- 8
- 8aM. Bruce, E. Horn, J. Matisons, M. Snow, Aust. J. Chem. 1984, 37, 1163–1170;
- 8bM. Bruce, D. Duffy, Aust. J. Chem. 1986, 39, 1697–1701;
- 8cM. I. Bruce, K. R. Grundy, M. J. Liddell, M. R. Snow, E. R. T. Tiekink, J. Organomet. Chem. 1988, 344, C 49–C52;
- 8dM. I. Bruce, B. C. Hall, B. W. Skelton, M. E. Smith, A. H. White, J. Chem. Soc. Dalton Trans. 2002, 995–1001;
- 8eO. Schuster, R.-Y. Liau, A. Schier, H. Schmidbaur, Inorg. Chim. Acta 2005, 358, 1429–1441.
- 9Recent studies have demonstrated σ,π-digold complexes as unactive speces in alkyne/alkene intermolecular cyclization, see:
- 9aC. Obradors, A. M. Echavarren, Chem. Eur. J. 2013, 19, 3547–3551;
- 9bA. Homs, C. Obradors, D. Lebœuf, A. M. Echavarren, Adv. Synth. Catal. 2014, 356, 221–228.
- 10
- 10aC. Iacobucci, S. Reale, F. De Angelis, Angew. Chem. Int. Ed. 2016, 55, 2980–2993;
Angew. Chem. 2016, 128, 3032–3045;
10.1002/ange.201507088 Google Scholar
- 10bS. Chen, Q. Wan, A. K. Badu-Tawiah, Angew. Chem. Int. Ed. 2016, 55, 9345–9349;
Angew. Chem. 2016, 128, 9491–9495;
10.1002/ange.201603530 Google Scholar
- 10cT. A. Brown, H. Chen, R. N. Zare, J. Am. Chem. Soc. 2015, 137, 7274–7277;
- 10dL. P. Yunker, R. L. Stoddard, J. S. McIndoe, J. Mass Spectrom. 2014, 49, 1–8;
- 10eA. Zavras, G. N. Khairallah, T. U. Connell, J. M. White, A. J. Edwards, P. S. Donnelly, R. A. O'Hair, Angew. Chem. Int. Ed. 2013, 52, 8391–8394;
Angew. Chem. 2013, 125, 8549–8552;
10.1002/ange.201302436 Google Scholar
- 10fR. H. Perry, K. R. Brownell, K. Chingin, T. J. Cahill, R. M. Waymouth, R. N. Zare, Proc. Natl. Acad. Sci. USA 2012, 109, 2246–2250;
- 10gR. H. Perry, M. Splendore, A. Chien, N. K. Davis, R. N. Zare, Angew. Chem. Int. Ed. 2011, 50, 250–254; Angew. Chem. 2011, 123, 264–268;
- 10hM. M. Meyer, G. N. Khairallah, S. R. Kass, R. A. O'Hair, Angew. Chem. Int. Ed. 2009, 48, 2934–2936;
Angew. Chem. 2009, 121, 2978–2980;
10.1002/ange.200900245 Google Scholar
- 10iA. A. Sabino, A. H. Machado, C. R. Correia, M. N. Eberlin, Angew. Chem. Int. Ed. 2004, 43, 2514–2518;
Angew. Chem. 2004, 116, 2568–2572;
10.1002/ange.200353076 Google Scholar
- 10jS. R. Wilson, J. Perez, A. Pasternak, J. Am. Chem. Soc. 1993, 115, 1994–1997;
- 10kR. R. Julian, J. A. May, B. M. Stoltz, J. L. Beauchamp, J. Am. Chem. Soc. 2003, 125, 4478–4486;
- 10lD. Feichtinger, D. A. Plattner, P. Chen, J. Am. Chem. Soc. 1998, 120, 7125–7126;
- 10mD. Feichtinger, D. A. Plattner, Angew. Chem. Int. Ed. Engl. 1997, 36, 1718–1719;
Angew. Chem. 1997, 109, 1796–1798;
10.1002/ange.19971091613 Google Scholar
- 10nH. Bao, J. Z. Z. Wang, K. Ding, J. Am. Chem. Soc. 2008, 130, 10116–10127;
- 10oG. N. Khairallah, R. A. J. O'Hair, U. Wille, J. Phys. Chem. A 2014, 118, 3295–3306;
- 10pA. Zavras, G. N. Khairallah, R. A. J. O'Hair, Int. J. Mass Spectrom. 2013, 354–355, 242–248;
- 10qL. S. Santos, C. H. Pavam, W. P. Almeida, F. Coelho, M. N. Eberlin, Angew. Chem. Int. Ed. 2004, 43, 4330–4333;
Angew. Chem. 2004, 116, 4430–4433;
10.1002/ange.200460059 Google Scholar
- 10rA. H. L. Machado, H. M. S. Milagre, L. S. Eberlin, A. A. Sabino, C. R. D. Correia, M. N. Eberlin, Org. Biomol. Chem. 2013, 11, 3277–3281;
- 10sJ. Roithová, Š. Janková, L. Jašíková, J. Váňa, S. Hybelbauerová, Angew. Chem. Int. Ed. 2012, 51, 8378–8382;
Angew. Chem. 2012, 124, 8503–8507;
10.1002/ange.201204003 Google Scholar
- 10tY. Cai, J. Wang, Y. Zhang, Z. Li, D. Hu, N. Zheng, H. Chen, J. Am. Chem. Soc. 2017, 139, 12259–12266.
- 11
- 11aJ. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Domínguez, A. Leyva-Pérez, A. Corma, Science 2012, 338, 1452–1455;
- 11bD. H. Ringger, P. Chen, Angew. Chem. Int. Ed. 2013, 52, 4686–4689;
Angew. Chem. 2013, 125, 4784–4787;
10.1002/ange.201209569 Google Scholar
- 11cP. S. D. Robinson, G. N. Khairallah, G. da Silva, H. Lioe, R. A. J. O'Hair, Angew. Chem. Int. Ed. 2012, 51, 3812–3817;
Angew. Chem. 2012, 124, 3878–3883.
10.1002/ange.201108502 Google Scholar
- 12R. E. Ebule, D. Malhotra, G. B. Hammond, B. Xu, Adv. Synth. Catal. 2016, 358, 1478–1481.
- 13N. Mézailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133–4136.
- 14The highest intensity peak could even be a resting state. Peak m/z=1109 is dominant but m/z=651 is quite small. When we repeated the experiment as shown in Figure 2, we noticed that the m/z=1109 intensity change with time is consistent with the product formation rate. However, the m/z=651 intensity increased at 15 min and did not decrease much at 30 min (NMR results showed that the reaction nearly was completed at 30 min), providing an evidence that m/z=1109 rather than m/z=651 is the key reaction intermediate.
- 15
- 15aZ. Miao, S. Wu, H. Chen, J. Am. Soc. Mass Spectrom. 2010, 21, 1730–1736;
- 15bM. Eftekhari, A. I. Ismail, R. N. Zare, Rapid Commun. Mass Spectrom. 2012, 26, 1985–1992;
- 15cG. K. Barbula, M. D. Robbins, O. K. Yoon, I. Zuleta, R. N. Zare, Anal. Chem. 2009, 81, 9035–9040;
- 15dQ. Zheng, Y. Liu, Q. Chen, M. Hu, R. Helmy, E. C. Sherer, C. J. Welch, H. Chen, J. Am. Chem. Soc. 2015, 137, 14035–14038;
- 15eH. Chen, I. Cotte-Rodriguez, R. G. Cooks, Chem. Commun. 2006, 597–599;
- 15fZ. Takats, J. M. Wiseman, B. Gologan, R. G. Cooks, Science 2004, 306, 471–473;
- 15gZ. Miao, H. Chen, J. Am. Soc. Mass Spectrom. 2009, 20, 10–19.
- 16
- 16aA. Zhdanko, M. E. Maier, Chem. Eur. J. 2013, 19, 3932–3942;
- 16bA. Zhdanko, M. E. Maier, Organometallics 2013, 32, 2000–2006;
- 16cA. Zhdanko, M. E. Maier, Chem. Eur. J. 2014, 20, 1918–1930;
- 16dA. Zhdanko, M. E. Maier, ACS Catal. 2014, 4, 2770–2775.
- 17L. Jasikova, M. Anania, S. Hybelbauerova, J. Roithova, J. Am. Chem. Soc. 2015, 137, 13647–13657.
- 18Unlike the digold species in Figure 1 A, which are product-derived and already have been shown to be part of the catalytic cycle, the digold species we detected in this system is starting material-derived and more investigation is necessary to identify whether it will be involved in the catalytic cycle.
- 19N. Ghosh, S. Nayak, A. K. Sahoo, J. Org. Chem. 2011, 76, 500–511.
- 20
- 20aH. Kruse, S. Grimme, J. Chem. Phys. 2012, 136, 154101;
- 20bP. Nava, D. Hagebaum-Reignier, S. Humbel, ChemPhysChem 2012, 13, 2090–2096;
- 20cR. Joseph, A. Nkrumah, R. J. Clark, E. Masson, J. Am. Chem. Soc. 2014, 136, 6602–6607;
- 20dM. Bühl, C. Reimann, D. A. Pantazis, T. Bredow, F. Neese, J. Chem. Theory Comput. 2008, 4, 1449–1459;
- 20eJ. Vícha, M. Patzschke, R. Marek, Phys. Chem. Chem. Phys. 2013, 15, 7740–7754.
- 21N. Marion, P. Carlqvist, R. Gealageas, P. de Frémont, F. Maseras, S. P. Nolan, Chem. Eur. J. 2007, 13, 6437–6451.