Dichloro-Cycloazatriphosphane: The Missing Link between N2P2 and P4 Ring Systems in the Systematic Development of NP Chemistry
Dr. Jonas Bresien
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Search for more papers by this authorDr. Alexander Hinz
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Axel Schulz
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Search for more papers by this authorTim Suhrbier
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Search for more papers by this authorMax Thomas
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Search for more papers by this authorDr. Alexander Villinger
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Search for more papers by this authorDr. Jonas Bresien
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Search for more papers by this authorDr. Alexander Hinz
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA UK
Search for more papers by this authorCorresponding Author
Prof. Dr. Axel Schulz
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Search for more papers by this authorTim Suhrbier
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Search for more papers by this authorMax Thomas
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Search for more papers by this authorDr. Alexander Villinger
Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany
Search for more papers by this authorGraphical Abstract
NP3 ring system: Starting from a highly reactive amino-diphosphene, a dichloro-cycloazatriphosphane (see Scheme) could be synthesized and fully characterized. This new ring system can be regarded as a congener of [XP(μ-NR)]2 and [XP(μ-PR)]2 systems and therefore contributes to a systematic development of NP chemistry.
Abstract
A dichloro-cycloazatriphosphane that incorporates a cyclic NP3 backbone could be synthesized using knowledge gained from the chemistry of N2P2 and P4 ring systems. It fills the gap between the congeneric compounds [ClP(μ-NR)]2 and [ClP(μ-PR)]2 (R=sterically demanding substituent), and thus contributes to the systematic development of nitrogen–phosphorus chemistry in general. The title compound was studied with respect to its formation via a labile aminodiphosphene, which readily underwent different rearrangement reactions depending on the solvent. All compounds were fully characterized by experimental and computational methods.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201704278-sup-0001-misc_information.pdf19 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. S. Balakrishna, V. S. Reddy, S. S. Krishnamurthy, J. F. Nixon, J. C. T. R. B. St. Laurent, Coord. Chem. Rev. 1994, 129, 1–90.
- 2L. Stahl, Coord. Chem. Rev. 2000, 210, 203–250.
- 3G. G. Briand, T. Chivers, M. L. Krahn, Coord. Chem. Rev. 2002, 233–234, 237–254.
- 4M. S. Balakrishna, D. J. Eisler, T. Chivers, Chem. Soc. Rev. 2007, 36, 650–664.
- 5G. He, O. Shynkaruk, M. W. Lui, E. Rivard, Chem. Rev. 2014, 114, 7815–7880.
- 6M. S. Balakrishna, Dalton Trans. 2016, 45, 12252–12282.
- 7H. Köhler, A. Michaelis, Ber. Dtsch. Chem. Ges. 1877, 10, 807–814.
10.1002/cber.187701001222 Google Scholar
- 8A. Michaelis, G. Schroeter, Ber. Dtsch. Chem. Ges. 1894, 27, 490–497.
10.1002/cber.18940270197 Google Scholar
- 9W. Kuchen, H. Buchwald, Angew. Chem. 1956, 68, 791.
- 10J. J. Daly, L. Maier, Nature 1964, 203, 1167–1168.
- 11E. W. Abel, D. A. Armitage, G. R. Willey, J. Chem. Soc. 1965, 57–61.
- 12A. R. Davies, A. T. Dronsfield, R. N. Haszeldine, D. R. Taylor, J. Chem. Soc. Perkin Trans. 1 1973, 379–385.
- 13M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, J. Am. Chem. Soc. 1981, 103, 4587–4589.
- 14M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, J. Am. Chem. Soc. 1982, 104, 6167.
- 15E. Niecke, M. Nieger, F. Reichert, Angew. Chem. Int. Ed. Engl. 1988, 27, 1715–1716; Angew. Chem. 1988, 100, 1781–1782.
- 16R. C. Smith, E. Urnéžius, K.-C. Lam, A. L. Rheingold, J. D. Protasiewicz, Inorg. Chem. 2002, 41, 5296–5299.
- 17N. Burford, T. S. Cameron, K. D. Conroy, B. Ellis, M. D. Lumsden, C. L. B. Macdonald, R. McDonald, A. D. Phillips, P. J. Ragogna, R. W. Schurko, D. Walsh, R. E. Wasylishen, J. Am. Chem. Soc. 2002, 124, 14012–14013.
- 18N. Burford, T. S. Cameron, C. L. B. Macdonald, K. N. Robertson, R. W. Schurko, D. Walsh, R. McDonald, R. E. Wasylishen, Inorg. Chem. 2005, 44, 8058–8064.
- 19M. Lehmann, A. Schulz, A. Villinger, Struct. Chem. 2011, 22, 35–43.
- 20E. Urnéžius, J. D. Protasiewicz, Main Group Chem. 1996, 1, 369–372.
- 21F. Reiss, A. Schulz, A. Villinger, N. Weding, Dalton Trans. 2010, 39, 9962–9972.
- 22L. N. Markovskii, V. D. Romanenko, M. I. Povolotskii, A. V. Ruban, E. O. Klebanskii, Zh. Obshch. Khim. 1986, 56, 2157–2158.
- 23J. Bresien, C. Hering, A. Schulz, A. Villinger, Chem. Eur. J. 2014, 20, 12607–12615.
- 24J. Bresien, K. Faust, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 6926–6930;
Angew. Chem. 2015, 127, 7030–7034.
10.1002/ange.201500892 Google Scholar
- 25J. Bresien, A. Schulz, A. Villinger, Chem. Eur. J. 2015, 21, 18543–18546.
- 26J. Bresien, A. Schulz, A. Villinger, Dalton Trans. 2016, 45, 498–501.
- 27J. Bresien, K. Faust, C. Hering-Junghans, J. Rothe, A. Schulz, A. Villinger, Dalton Trans. 2016, 45, 1998–2007.
- 28A. Hinz, A. Schulz, A. Villinger, Inorg. Chem. 2016, 55, 3692–3699.
- 29B. M. Cossairt, N. A. Piro, C. C. Cummins, Chem. Rev. 2010, 110, 4164–4177.
- 30M. Scheer, G. Balázs, A. Seitz, Chem. Rev. 2010, 110, 4236–4256.
- 31N. A. Giffin, J. D. Masuda, Coord. Chem. Rev. 2011, 255, 1342–1359.
- 32E. Niecke, R. Rüger, B. Krebs, M. Dartmann, Angew. Chem. Int. Ed. Engl. 1983, 22, 552–553; Angew. Chem. 1983, 95, 570–571.
- 33D. Gudat, M. Link, G. Schröder, Magn. Reson. Chem. 1995, 33, 59–65.
- 34E. Niecke, O. Altmeyer, M. Nieger, F. Knoll, Angew. Chem. Int. Ed. Engl. 1987, 26, 1256–1257; Angew. Chem. 1987, 99, 1299–1300.
- 35T. Köchner, S. Riedel, A. J. Lehner, H. Scherer, I. Raabe, T. A. Engesser, F. W. Scholz, U. Gellrich, P. Eiden, R. A. Paz Schmidt, D. A. Plattner, I. Krossing, Angew. Chem. Int. Ed. 2010, 49, 8139–8143;
Angew. Chem. 2010, 122, 8316–8320.
10.1002/ange.201003031 Google Scholar
- 36C. Bolli, T. Köchner, C. Knapp, Z. Anorg. Allg. Chem. 2012, 638, 559–564.
- 37H. Bladt, S. Gonzalez Calera, J. M. Goodman, R. J. Less, V. Naseri, A. Steiner, D. S. Wright, Chem. Commun. 2009, 6637–6639.
- 38A. Hinz, R. Kuzora, U. Rosenthal, A. Schulz, A. Villinger, Chem. Eur. J. 2014, 20, 14659–14673.
- 39A. Hinz, R. Kuzora, A. Rölke, A. Schulz, A. Villinger, R. Wustrack, Eur. J. Inorg. Chem. 2016, 3611–3619.
- 40R. Blachnik, K. Hackmann, B. W. Tattershall, Polyhedron 1996, 15, 1415–1427.
- 41B. W. Tattershall, Phosphorus Sulfur Silicon Relat. Elem. 1997, 124, 193–202.
- 42B. W. Tattershall, R. W. Houghton, D. J. Martin, Z. Anorg. Allg. Chem. 2004, 630, 1991–1998.
- 43B. W. Tattershall, Z. Anorg. Allg. Chem. 2005, 631, 1627–1632.
- 44E. Niecke, B. Kramer, M. Nieger, Organometallics 1991, 10, 10–11.
- 45N. Burford, T. S. Cameron, K. D. Conroy, B. Ellis, C. L. Macdonald, R. Ovans, A. D. Phillips, P. J. Ragogna, D. Walsh, Can. J. Chem. 2002, 80, 1404–1409.
- 46M. Baudler, B. Makowka, Z. Anorg. Allg. Chem. 1985, 528, 7–21.
- 47A. H. Cowley, J. E. Kilduff, T. H. Newman, M. Pakulski, J. Am. Chem. Soc. 1982, 104, 5820–5821.
- 48E. Niecke, R. Rüger, Angew. Chem. Int. Ed. Engl. 1983, 22, 155–156; Angew. Chem. 1983, 95, 154–155.
- 49P. Jutzi, U. Meyer, B. Krebs, M. Dartmann, Angew. Chem. Int. Ed. Engl. 1986, 25, 919–921; Angew. Chem. 1986, 98, 894–895.
- 50A. A. Sandoval, H. C. Moser, Inorg. Chem. 1963, 2, 27–29.
- 51G. Fritz, J. Härer, Z. Anorg. Allg. Chem. 1981, 481, 185–200.
- 52G. Fritz, K. Stoll, Z. Anorg. Allg. Chem. 1986, 538, 78–112.
- 53E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold, NBO 6.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, MI (USA), 2013.
- 54A. Hinz, A. Schulz, A. Villinger, J.-M. Wolter, J. Am. Chem. Soc. 2015, 137, 3975–3980.
- 55A. Hinz, J. Rothe, A. Schulz, A. Villinger, Dalton Trans. 2016, 45, 6044–6052.
- 56A. Hinz, A. Schulz, A. Villinger, Chem. Eur. J. 2016, 22, 12266–12269.
- 57P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 12770–12779.
- 58Detailed information on computational studies can be found in the Supporting Information.