Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes
Corresponding Author
Prof. Igor V. Komarov
Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
Lumobiotics GmbH, Auer Str. 2, 76227 Karlsruhe, Germany
Search for more papers by this authorDr. Sergii Afonin
Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorDr. Oleg Babii
Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorTim Schober
Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Prof. Anne S. Ulrich
Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany
Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Prof. Igor V. Komarov
Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601 Kyiv, Ukraine
Lumobiotics GmbH, Auer Str. 2, 76227 Karlsruhe, Germany
Search for more papers by this authorDr. Sergii Afonin
Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorDr. Oleg Babii
Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany
Search for more papers by this authorTim Schober
Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
Search for more papers by this authorCorresponding Author
Prof. Anne S. Ulrich
Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany
Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
Search for more papers by this authorGraphical Abstract
Drugs for photopharmacology: The development of diarylethene-based biologically active molecules is critically analysed. This concept article suggests design principles that should be accounted for in the construction of efficient photocontrollable molecules containing diarylethene-based molecular switches.
Abstract
Diarylethene derivatives, the biological activity of which can be reversibly changed by irradiation with light of different wavelengths, have shown promise as scientific tools and as candidates for photocontrollable drugs. However, examples demonstrating efficient photocontrol of their biological activity are still relatively rare. This concept article discusses the possible reasons for this situation and presents a critical analysis of existing data and hypotheses in this field, in order to extract the design principles enabling the construction of efficient photocontrollable diarylethene-based molecules. Papers addressing biologically relevant interactions between diarylethenes and biomolecules are analyzed; however, in most published cases, the efficiency of photocontrol in living systems remains to be demonstrated. We hope that this article will encourage further discussion of design principles, primarily among pharmacologists, synthetic and medicinal chemists.
Conflict of interest
I.V.K., S.A., O.B. and A.S.U. are inventors on the issued patent family: “Peptidomimetics possessing photocontrolled biological activity” (WO201412719 (A1), EP2958934 (B1), US9481712 (B2), UA113685 (C2)).
References
- 1
- 1a Mosby's Medical Dictionary, 9th ed., Mosby Elsevier, St. Louis, 2013, p. 213;
- 1bH. P. Rang, J. M. Ritter, R. J. Flower, J. Henderson, Rang & Dale's Pharmacology, Churchill Livingstone, London, 2015, pp. 1–3.
- 2O. Raab, Z. Biol. 1900, 39, 524–546.
- 3T. J. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle, A. Mittleman, Cancer Res. 1978, 38, 2628–2635.
- 4
- 4aD. van Straten, V. Mashayekhi, H. S. de Bruijn, S. Oliveira, D. J. Robinson, Cancers 2017, 9, 19;
- 4bS. Dhaneshwar, K. Patil, M. Bulbule, V. Kinjawadekar, D. Joshi, V. Joshi, Int. J. Pharm. Sci. Rev. Res. 2014, 27, 125–141.
- 5S. H. Yun, S. J. J. Kwok, Nat. Biomed. Eng. 2017, 1, 0008.
- 6
- 6aC. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2012, 51, 8446–8476; Angew. Chem. 2012, 124, 8572–8604;
- 6bF. Reeßing, W. Szymanski, Curr. Med. Chem. 2017, 24, 4905–4950.
- 7J. H. Kaplan, B. Forbush III, J. F. Hoffman, Biochemistry 1978, 17, 1929–1935.
- 8
- 8aJ. Bieth, S. M. Vratsanos, N. Wassermann, B. F. Erlanger, Proc. Natl. Acad. Sci. USA 1969, 64, 1103–1106;
- 8bW. J. Deal, B. F. Erlanger, D. Nachmansohn, Proc. Natl. Acad. Sci. USA 1969, 64, 1230–1234;
- 8cJ. Bieth, N. Wassermann, S. M. Vratsanos, B. F. Erlanger, Proc. Natl. Acad. Sci. USA 1970, 66, 850–854.
- 9
- 9aA. B. Lerner, C. R. Denton, T. B. Fitzpatrick, J. Invest. Dermatol. 1953, 20, 299–314;
- 9bF. P. Gasparro, G. Chan, R. L. Edelson, Yale J. Biol. Med. 1985, 58, 519–534.
- 10
- 10aW. A. Velema, W. Szymanski, B. L. Feringa, J. Am. Chem. Soc. 2014, 136, 2178–2191;
- 10bM. M. Lerch, M. J. Hansen, G. M. van Dam, W. Szymanski, B. L. Feringa, Angew. Chem. Int. Ed. 2016, 55, 10978–10999; Angew. Chem. 2016, 128, 11140–11163.
- 11W. Szymański, J. M. Beierle, H. A. V. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 2013, 113, 6114–6178.
- 12
- 12aK. Deisseroth, Nat. Methods 2011, 8, 26–29;
- 12bS. C. P. Williams, K. Deisseroth, Proc. Natl. Acad. Sci. USA 2013, 110, 16287–16287.
- 13
- 13aG. Berkovic, Chem. Rev. 2000, 100, 1741–1753;
- 13bB. Otto, K. Rück-Braun, Eur. J. Org. Chem. 2003, 2409–2417;
- 13cM. Erdélyi, A. Karlén, A. Gogoll, Chem. Eur. J. 2006, 12, 403–412;
- 13dM. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174–12277;
- 13eR. J. Mart, R. K. Allemann, Chem. Commun. 2016, 52, 12262–12277;
- 13fJ. Zhang, H. Tian, Adv. Opt. Mater. 2018, 6, 1701278.
- 14
- 14aM. Schoenberger, A. Damijonaitis, Z. Zhang, D. Nagel, D. Trauner, ACS Chem. Neurosci. 2014, 5, 514–518;
- 14bM. Borowiak, W. Nahaboo, M. Reynders, K. Nekolla, P. Jalinot, J. Hasserodt, M. Rehberg, M. Delattre, S. Zahler, A. Vollmar, D. Trauner, O. Thorn-Seshold, Cell 2015, 162, 403–411.
- 15W. A. Velema, J. P. van der Berg, M. J. Hansen, W. Szymanski, A. J. M. Driessen, B. L. Feringa, Nat. Chem. 2013, 5, 924–928.
- 16
- 16aJ. E. Zweig, T. R. Newhouse, J. Am. Chem. Soc. 2017, 139, 10956–10959;
- 16bC. Poloni, W. Szymański, L. Hou, W. R. Browne, B. L. Feringa, Chem. Eur. J. 2014, 20, 946–951.
- 17D. Wutz, D. Gluhacevic, A. Chakrabarti, K. Schmidtkunz, D. Robaa, F. Erdmann, C. Romier, W. Sippl, M. Jung, B. König, Org. Biomol. Chem. 2017, 15, 4882–4896.
- 18T. Yamada, S. Kobatake, K. Muto, M. Irie, J. Am. Chem. Soc. 2000, 122, 1589–1592.
- 19
- 19aA. Mostad, C. Rømming, Acta Chem. Scand. 1971, 25, 3561–3568;
- 19bC. J. Brown, Acta Crystallogr. 1966, 21, 146–152.
- 20M. Irie, Photochem. Photobiol. Sci. 2010, 9, 1535–1542.
- 21A. J. Kirby, F. Hollfelder, Nature 2008, 456, 45–47.
- 22P. A. Sigala, D. A. Kraut, J. M. M. Caaveiro, B. Pybus, E. A. Ruben, D. Ringe, G. A. Petsko, D. Herschlag, J. Am. Chem. Soc. 2008, 130, 13696–13708.
- 23K. Klaue, Y. Garmshausen, S. Hecht, Angew. Chem. Int. Ed. 2018, 57, 1414–1417; Angew. Chem. 2018, 130, 1429–1432.
- 24H.-W. Lee, S. G. Robinson, S. Bandyopadhyay, R. H. Mitchell, D. Sen, J. Mol. Biol. 2007, 371, 1163–1173.
- 25J. − y. Okuda, Y. Tanaka, R. Kodama, K. Sumaru, K. Morishita, T. Kanamori, S. Yamazoe, K. Hyodo, S. Yamazaki, T. Miyatake, S. Yokojima, S. Nakamura, K. Uchida, Chem. Commun. 2015, 51, 10957–10960.
- 26A. Presa, R. F. Brissos, A. B. Caballero, I. Borilovic, L. Korrodi-Gregório, R. Pérez-Tomás, O. Roubeau, P. Gamez, Angew. Chem. Int. Ed. 2015, 54, 4561–4565; Angew. Chem. 2015, 127, 4644–4648.
- 27
- 27aM. Singer, A. Jäschke, J. Am. Chem. Soc. 2010, 132, 8372–8377;
- 27bH. Cahová, A. Jäschke, Angew. Chem. Int. Ed. 2013, 52, 3186–3190; Angew. Chem. 2013, 125, 3268–3272.
- 28K. Fujimoto, M. Amano, Y. Horibe, M. Inouye, Org. Lett. 2006, 8, 285–287.
- 29K. Fujimoto, M. Kajino, I. Sakaguchi, M. Inouye, Chem. Eur. J. 2012, 18, 9834–9840.
- 30
- 30aO. Babii, S. Afonin, M. Berditsch, S. Reiber, P. K. Mykhailiuk, V. S. Kubyshkin, T. Steinbrecher, A. S. Ulrich, I. V. Komarov, Angew. Chem. Int. Ed. 2014, 53, 3392–3395; Angew. Chem. 2014, 126, 3460–3463;
- 30bO. Babii, S. Afonin, L. V. Garmanchuk, V. V. Nikulina, T. V. Nikolaienko, O. V. Storozhuk, D. V. Shelest, O. I. Dasyukevich, L. I. Ostapchenko, V. Iurchenko, S. Zozulya, A. S. Ulrich, I. V. Komarov, Angew. Chem. Int. Ed. 2016, 55, 5493–5496; Angew. Chem. 2016, 128, 5583–5586.
- 31U. Al-Atar, R. Fernandes, B. Johnsen, D. Baillie, N. R. Branda, J. Am. Chem. Soc. 2009, 131, 15966–15967.
- 32D. Vomasta, C. Högner, N. R. Branda, B. König, Angew. Chem. Int. Ed. 2008, 47, 7644–7647; Angew. Chem. 2008, 120, 7756–7759.
- 33D. Vomasta, A. Innocenti, B. König, C. T. Supuran, Bioorg. Med. Chem. Lett. 2009, 19, 1283–1286.
- 34B. Reisinger, N. Kuzmanovic, P. Löffler, R. Merkl, B. König, R. Sterner, Angew. Chem. Int. Ed. 2014, 53, 595–598; Angew. Chem. 2014, 126, 606–609.
- 35D. Wilson, J. W. Li, N. R. Branda, ChemMedChem 2017, 12, 284–287.
- 36
- 36aJ. Kärnbratt, M. Hammarson, S. Li, H. L. Anderson, B. Albinsson, J. Andréasson, Angew. Chem. Int. Ed. 2010, 49, 1854–1857; Angew. Chem. 2010, 122, 1898–1901;
- 36bS. Yagai, K. Ohta, M. Gushiken, K. Iwai, A. Asano, S. Seki, Y. Kikkawa, M. Morimoto, A. Kitamura, T. Karatsu, Chem. Eur. J. 2012, 18, 2244–2253;
- 36cT. Hirose, K. Matsuda, Org. Biomol. Chem. 2013, 11, 873–880.
- 37D. D. Boehr, R. Nussinov, P. E. Wright, Nat. Chem. Biol. 2009, 5, 789–796.
- 38K. K. Frederick, M. S. Marlow, K. G. Valentine, A. J. Wand, Nature 2007, 448, 325–329.
- 39
- 39aK. Henzler-Wildman, D. Kern, Nature 2007, 450, 964–972;
- 39bS. C. L. Kamerlin, A. Warshel, Proteins 2010, 78, 1339–1375.
- 40
- 40aV. A. Jarymowycz, M. J. Stone, Chem. Rev. 2006, 106, 1624–1671;
- 40bT. I. Igumenova, K. K. Frederick, A. J. Wand, Chem. Rev. 2006, 106, 1672–1699.
- 41
- 41aT. Wieprecht, J. Seelig, Curr. Top. Membr. 2002, 52, 31–56;
- 41bT. S. G. Olsson, M. A. Williams, W. R. Pitt, J. E. Ladbury, J. Mol. Biol. 2008, 384, 1002–1017.
- 42D. A. Turton, H. M. Senn, T. Harwood, A. J. Lapthorn, E. M. Ellis, K. Wynne, Nat. Commun. 2014, 5, 3999.
- 43B. C. Doak, J. Zheng, D. Dobritzsch, J. Kihlberg, J. Med. Chem. 2016, 59, 2312–2327.
- 44A. R. Khan, J. C. Parrish, M. E. Fraser, W. W. Smith, P. A. Bartlett, M. N. G. James, Biochemistry 1998, 37, 16839–16845.
- 45C. G. P. Taylor, W. Cullen, O. M. Collier, M. D. Ward, Chem. Eur. J. 2017, 23, 206–213.
- 46S. F. Martin, J. H. Clements, Annu. Rev. Biochem. 2013, 82, 267–293.
- 47K. H. Khoo, C. S. Verma, D. P. Lane, Nat. Rev. Drug Discovery 2014, 13, 217–236.
- 48M. Amaral, D. B. Kokh, J. Bomke, A. Wegener, H. P. Buchstaller, H. M. Eggenweiler, P. Matias, C. Sirrenberg, R. C. Wade, M. Frech, Nat. Commun. 2017, 8, 2276.
- 49S. Gordo, V. Martos, M. Vilaseca, M. Menéndez, J. de Mendoza, E. Giralt, Chem. Asian J. 2011, 6, 1463–1469.
- 50E. A. Kumar, Q. Chen, S. Kizhake, C. Kolar, M. Kang, C.-e. A. Chang, G. E. O. Borgstahl, A. Natarajan, Sci. Rep. 2013, 3, 1639.
- 51O. Babii, S. Afonin, T. Schober, I. V. Komarov, A. S. Ulrich, Biochem. Biophys. Acta Biomembr. 2017, 1859, 2505–2515.