Dynamic Behavior of Covalent Organic Cages
Dr. Kosuke Ono
Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
Search for more papers by this authorCorresponding Author
Prof. Nobuharu Iwasawa
Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551 Japan
Search for more papers by this authorDr. Kosuke Ono
Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
Search for more papers by this authorCorresponding Author
Prof. Nobuharu Iwasawa
Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551 Japan
Search for more papers by this authorGraphical Abstract
Capture and release: The dynamic behavior of covalent organic cages has emerged as a new field of supramolecular chemistry. Herein, this behavior is classified into four types: dimerization into interlocked cages, transformation into different cage structures, exchange of components, and disassembly (see figure). The characteristics and driving forces of dynamic behavior, as well as problems to be solved, are highlighted.
Abstract
Discrete, large, covalent organic cages have recently been constructed by utilizing various types of dynamic covalent bond formation. The reversibility of bond formation can provide an opportunity to exhibit unique dynamic behavior; however, the transformation of such rigid cages to other structures remains challenging. To clarify the current status of this emerging research field, this Concept article gives an overview of recent progress of the dynamic behavior of covalent organic cages by classifying them into four types of transformation, namely, dimerization into the interlocked cages, transformation into different cage structures, exchange of components, and disassembly. The driving forces of such dynamic behavior and problems to be solved are also highlighted.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aS. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. Int. Ed. 2002, 41, 898–952; Angew. Chem. 2002, 114, 938–993;
- 1bY. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634–6654.
- 2“Organic Cages through Dynamic Covalent Reactions”: H. Ding, R. Chen, C. Wang, in Dynamic Covalent Chemistry: Principles, Reactions, and Applications (Eds.: ), Wiley-VCH, Weinheim, 2017, pp. 165–205.
10.1002/9781119075738.ch4 Google Scholar
- 3
- 3aJ. Tian, P. K. Thallapally, S. J. Dalgarno, P. B. McGrail, J. L. Atwood, Angew. Chem. Int. Ed. 2009, 48, 5492–5495;
Angew. Chem. 2009, 121, 5600–5603;
10.1002/ange.200900479 Google Scholar
- 3bH. Kudo, R. Hayashi, K. Mitani, T. Yokozawa, N. C. Kasuga, T. Nishikubo, Angew. Chem. Int. Ed. 2006, 45, 7948–7952;
Angew. Chem. 2006, 118, 8116–8120.
10.1002/ange.200603013 Google Scholar
- 4T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner, A. I. Cooper, Nat. Mater. 2009, 8, 973–979.
- 5For selected reviews, see:
- 5aM. Mastalerz, Angew. Chem. Int. Ed. 2010, 49, 5042–5053;
Angew. Chem. 2010, 122, 5164–5175;
10.1002/ange.201000443 Google Scholar
- 5bK. Ono, J. Synth. Org. Chem. Jpn. 2012, 70, 653-354;
- 5cM. Mastalerz, Chem. Eur. J. 2012, 18, 10082–10091;
- 5dG. Zhang, M. Mastalerz, Chem. Soc. Rev. 2014, 43, 1934–1947;
- 5eT. Hasell, A. I. Cooper, Nat. Rev. Mater. 2016, 1, 16053;
- 5fF. Beuerle, B. Gole, Angew. Chem. Int. Ed. 2018, 57, 4850–4878.
- 6T. Hasell, M. Schmidtmann, C. A. Stone, M. W. Smith, A. I. Cooper, Chem. Commun. 2012, 48, 4689–4691.
- 7
- 7aM. Liu, M. A. Little, K. E. Jelfs, J. T. A. Jones, M. Schmidtmann, S. Y. Chong, T. Hasell, A. I. Cooper, J. Am. Chem. Soc. 2014, 136, 7583–7586;
- 7bX.-Y. Hu, W.-S. Zhang, F. Rominger, I. Wacker, R. R. Schröder, M. Mastalerz, Chem. Commun. 2017, 53, 8616–8619;
- 7cS. Bera, A. Basu, S. Tothadi, B. Garai, S. Banerjee, K. Vanka, R. Banerjee, Angew. Chem. Int. Ed. 2017, 56, 2123–2126;
Angew. Chem. 2017, 129, 2155–2158.
10.1002/ange.201611260 Google Scholar
- 8Conformational changes that do not involve bond cleavage of the cage framework are excluded from this Concept article.
- 8aJ. T. A. Jones, D. Holden, T. Mitra, T. Hasell, D. J. Adams, K. E. Jelfs, A. Trewin, D. J. Willock, G. M. Day, J. Bacsa, A. Steiner, A. I. Cooper, Angew. Chem. Int. Ed. 2011, 50, 749–753; Angew. Chem. 2011, 123, 775–779;
- 8bK. E. Jelfs, F. Schiffmann, J. T. A. Jones, B. Slater, F. Cora, A. I. Cooper, Phys. Chem. Chem. Phys. 2011, 13, 20081–20085;
- 8cA. Galán, E. C. Escudero-Adán, P. Ballester, Chem. Sci. 2017, 8, 7746–7750;
- 8dH. Qu, Y. Wang, Z. Li, X. Wang, H. Fang, Z. Tian, X. Cao, J. Am. Chem. Soc. 2017, 139, 18142–18145.
- 9C. J. Bruns, J. F. Stoddart, The nature of the mechanical bond: from molecules to machines, Wiley-VCH, Weinheim, 2017.
- 10S.-L. Huang, T. S. A. Hor, G.-X. Jin, Coord. Chem. Rev. 2017, 333, 1–26.
- 11T. Hasell, X. Wu, J. T. A. Jones, J. Bacsa, A. Steiner, T. Mitra, A. Trewin, D. J. Adams, A. I. Cooper, Nat. Chem. 2010, 2, 750–755.
- 12G. Zhang, O. Presly, F. White, I. M. Oppel, M. Mastalerz, Angew. Chem. Int. Ed. 2014, 53, 5126–5130;
Angew. Chem. 2014, 126, 5226–5230.
10.1002/ange.201400285 Google Scholar
- 13G. Zhang, O. Presly, F. White, I. M. Oppel, M. Mastalerz, Angew. Chem. Int. Ed. 2014, 53, 1516–1520;
Angew. Chem. 2014, 126, 1542–1546.
10.1002/ange.201308924 Google Scholar
- 14
- 14aQ. Wang, C. Yu, H. Long, Y. Du, Y. Jin, W. Zhang, Angew. Chem. Int. Ed. 2015, 54, 7550–7554;
Angew. Chem. 2015, 127, 7660–7664; see also
10.1002/ange.201501679 Google Scholar
- 14bY. Jin, Q. Wang, P. Taynton, W. Zhang, Acc. Chem. Res. 2014, 47, 1575–1586;
- 14cQ. Wang, C. Yu, C. Zhang, H. Long, S. Azarnoush, Y. Jin, W. Zhang, Chem. Sci. 2016, 7, 3370–3376.
- 15H. Li, H. Zhang, A. D. Lammer, M. Wang, X. Li, V. M. Lynch, J. L. Sessler, Nat. Chem. 2015, 7, 1003–1008.
- 16X. Liu, R. Warmuth, J. Am. Chem. Soc. 2006, 128, 14120–14127.
- 17C. J. Pugh, V. Santolini, R. L. Greenaway, M. A. Little, M. E. Briggs, K. E. Jelfs, A. I. Cooper, Cryst. Growth Des. 2018, 18, 2759–2764.
- 18K. Ono, S. Shimo, K. Takahashi, N. Yasuda, H. Uekusa, N. Iwasawa, Angew. Chem. Int. Ed. 2018, 57, 3113–3117.
- 19A. L. Korich, P. M. Iovine, Dalton Trans. 2010, 39, 1423–1431.
- 20S. Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2015, 44, 419–432.
- 21
- 21aM. M. Safont-Sempere, G. Fernández, F. Würthner, Chem. Rev. 2011, 111, 5784–5814;
- 21bF. Beuerle, S. Klotzbach, A. Dhara, Synlett 2016, 27, 1133–1138.
- 22K. Acharyya, S. Mukherjee, P. S. Mukherjee, J. Am. Chem. Soc. 2013, 135, 554–557.
- 23D. Beaudoin, F. Rominger, M. Mastarlerz, Angew. Chem. Int. Ed. 2017, 56, 1244–1248;
Angew. Chem. 2017, 129, 1264–1268.
10.1002/ange.201610782 Google Scholar
- 24R. R. Julian, S. Myung, D. E. Clemmer, J. Phys. Chem. B 2005, 109, 440–444.
- 25S. Klotzbach, F. Beuerle, Angew. Chem. Int. Ed. 2015, 54, 10356–10360; Angew. Chem. 2015, 127, 10497–10502.
- 26
- 26aS. Lee, A. Yang, T. P. Moneypenny II, J. S. Moore, J. Am. Chem. Soc. 2016, 138, 2182–2185;
- 26bT. P. Moneypenny II, A. Yang, N. P. Walter, T. J. Woods, D. L. Gray, Y. Zhang, J. S. Moore, J. Am. Chem. Soc. 2018, 140, 5825–5833.
- 27Q. Wang, C. Zhang, B. C. Noll, H. Long, Y. Jin, W. Zhang, Angew. Chem. Int. Ed. 2014, 53, 10663–10667;
Angew. Chem. 2014, 126, 10839–10843.
10.1002/ange.201404880 Google Scholar
- 28J. C. Lauer, W.-S. Zhang, F. Rominger, R. R. Schröder, M. Mastalerz, Chem. Eur. J. 2018, 24, 1816–1820.
- 29T. Wang, Y.-F. Zhang, Q.-Q. Hou, W.-R. Xu, X.-P. Cao, H.-F. Chow, D. Kuck, J. Org. Chem. 2013, 78, 1062–1069.
- 30X. Zheng, Y. Zhang, G. Wu, J.-R. Liu, N. Cao, L. Wang, Y. Wang, X. Li, X. Hong, C. Yang, H. Li, Chem. Commun. 2018, 54, 3138–3141.
- 31K. Kataoka, T. D. James, Y. Kubo, J. Am. Chem. Soc. 2007, 129, 15126–15127.
- 32K. Ono, K. Johmoto, N. Yasuda, H. Uekusa, S. Fujii, M. Kiguchi, N. Iwasawa, J. Am. Chem. Soc. 2015, 137, 7015–7018.
- 33Y.-C. Horng, T.-L. Lin, C.-Y. Tu, T.-J. Sung, C.-C. Hsieh, C.-H. Hu, H. M. Lee, T. S. Kuo, Eur. J. Org. Chem. 2009, 1511–1514.
- 34A. Dhara, F. Beuerle, Chem. Eur. J. 2015, 21, 17391–17396.
- 35C. Bravin, E. Badetti, F. A. Scaramuzzo, G. Licini, C. Zonta, J. Am. Chem. Soc. 2017, 139, 6456–6460.
- 36D. Ajami, J. Rebek, Nat. Chem. 2009, 1, 87–90.
- 37S. Ro, S. J. Rowan, A. R. Pease, D. J. Cram, J. F. Stoddart, Org. Lett. 2000, 2, 2411–2414.
- 38
- 38aN. Nishimura, K. Kobayashi, Angew. Chem. Int. Ed. 2008, 47, 6255–6258;
Angew. Chem. 2008, 120, 6351–6354;
10.1002/ange.200802293 Google Scholar
- 38bN. Nishimura, K. Yoza, K. Kobayashi, J. Am. Chem. Soc. 2010, 132, 777–790.
- 39Y. Wang, H. Fang, W. Zhang, Y. Zhuang, Z. Tian, X. Cao, Chem. Commun. 2017, 53, 8956–8959.
- 40X. Wang, Y. Wang, H. Yang, H. Fang, R. Chen, Y. Sun, N. Zheng, K. Tan, X. Lu, Z. Tian, X. Cao, Nat. Commun. 2016, 7, 12469–12475.
- 41A. Szumna, Chem. Soc. Rev. 2010, 39, 4274–4285.
- 42F. Hof, S. L. Craig, C. Nuckolls, J. Rebek, Jr., Angew. Chem. Int. Ed. 2002, 41, 1488–1508;
10.1002/1521-3773(20020503)41:9<1488::AID-ANIE1488>3.0.CO;2-G CASPubMedWeb of Science®Google ScholarAngew. Chem. 2002, 114, 1556–1578.10.1002/1521-3757(20020503)114:9<1556::AID-ANGE1556>3.0.CO;2-C Google Scholar
- 43A. Wilson, G. Gasparini, S. Matile, Chem. Soc. Rev. 2014, 43, 1948–1962.