A Strongly Luminescent Chromium(III) Complex Acid
Dr. Sven Otto
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
Search for more papers by this authorDr. Christoph Förster
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorCui Wang
Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstätter-Straße 11, 12489 Berlin, Germany
Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
Search for more papers by this authorCorresponding Author
Dr. Ute Resch-Genger
Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstätter-Straße 11, 12489 Berlin, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Katja Heinze
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorDr. Sven Otto
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
Search for more papers by this authorDr. Christoph Förster
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorCui Wang
Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstätter-Straße 11, 12489 Berlin, Germany
Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
Search for more papers by this authorCorresponding Author
Dr. Ute Resch-Genger
Division 1.2 Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard Willstätter-Straße 11, 12489 Berlin, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Katja Heinze
Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorDedicated to Prof. Dietmar Stalke on the occasion of his 60th birthday
Graphical Abstract
Luminescent chromium complex: The NIR emissive complex [Cr(H2tpda)2]3+ (H2tpda=2,6-bis(2-pyridylamino)pyridine) is more acidic than [NH4]+ and its NH protons easily exchange with deuterium in D2O/DClO4. This measure strongly enhances its luminescence quantum yield and emission lifetime. As the conjugate base [Cr(Htpda)(H2tpda)]2+ is non-luminescent, the conjugate acid/base pair acts as a pH dependent luminescent on/off switch.
Abstract
The synthesis, structure, reactivity, and photophysical properties of a novel acidic, luminescent chromium(III) complex [Cr(H2tpda)2]3+ (23+) bearing the tridentate H2tpda (2,6-bis(2-pyridylamino)pyridine) ligand are presented. Excitation of 23+ at 442 nm results in strong, long-lived NIR luminescence at 782 nm in water and in acetonitrile. X-ray diffraction analysis and IR spectroscopy reveal hydrogen-bonding interactions of the counter ions to the NH groups of 23+ in the solid state. Deprotonation of the NH groups of 23+ by using a non-nucleophilic Schwesinger base in CH3CN switches off the luminescence. Re-protonation by using HClO4 restores the emission. In water, the pKa value of 23+ amounts to 8.8, yet deprotonation is not reversible in the presence of hydroxide ions. Dioxygen quenches the emission of 23+, but to a weaker extent than expected. This is possibly due to the strong ion-pairing properties of 23+ even in solution, reducing the energy transfer efficiency to O2. Deuteration of the NH groups of 23+ approximately doubles the quantum yield and lifetime in water, demonstrating the importance of multiphoton relaxation in these NIR emitters.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201802797-sup-0001-misc_information.pdf2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. B. Larsen, O. S. Wenger, Chem. Eur. J. 2018, 24, 2039–2058.
- 2
- 2aB. Hupp, C. Schiller, C. Lenczyk, M. Stanoppi, K. Edkins, A. Lorbach, A. Steffen, Inorg. Chem. 2017, 56, 8996–9008;
- 2bM. Iwamura, S. Takeuchi, T. Tahara, Acc. Chem. Res. 2015, 48, 782–791.
- 3P. S. Wagenknecht, P. C. Ford, Coord. Chem. Rev. 2011, 255, 591–616.
- 4Y. Zhang, J. L. Petersen, C. Milsmann, J. Am. Chem. Soc. 2016, 138, 13115–13118.
- 5
- 5aP. Chábera, Y. Liu, O. Prakash, E. Thyrhaug, A. El Nahhas, A. Honarfar, S. Essén, L. A. Fredin, T. C. B. Harlang, K. S. Kjaer, K. Handrup, F. Ericsson, Y. Tatsuno, K. Morgan, J. Schnadt, L. Häggström, T. Ericsson, A. Sobkowiak, S. Lidin, P. Huang, S. Styring, J. Uhlig, J. Bendix, R. Lomoth, V. Sundström, P. Persson, K. Wärnmark, Nature 2017, 543, 695–699;
- 5bB. Sarkar, L. Suntrup, Angew. Chem. Int. Ed. 2017, 56, 8938–8940;
Angew. Chem. 2017, 129, 9064–9066.
10.1002/ange.201704522 Google Scholar
- 6
- 6aL. A. Büldt, X. Guo, A. Prescimone, O. S. Wenger, Angew. Chem. Int. Ed. 2016, 55, 11247–11250;
Angew. Chem. 2016, 128, 11413–11417;
10.1002/ange.201605571 Google Scholar
- 6bL. A. Büldt, O. S. Wenger, Angew. Chem. Int. Ed. 2017, 56, 5676–5682;
Angew. Chem. 2017, 129, 5770–5776;
10.1002/ange.201701210 Google Scholar
- 6cL. A. Büldt, X. Guo, R. Vogel, A. Prescimone, O. S. Wenger, J. Am. Chem. Soc. 2017, 139, 985–992;
- 6dL. A. Büldt, C. B. Larsen, O. S. Wenger, Chem. Eur. J. 2017, 23, 8577–8580.
- 7
- 7aE. B. Sveshnikova, V. L. Ermolaev, Opt. Spectrosc. 2011, 111, 34–50;
- 7bV. L. Ermolaev, E. B. Sveshnikova, Russ. Chem. Rev. 1994, 63, 905–922.
10.1070/RC1994v063n11ABEH000125 Google Scholar
- 8
- 8aJ. V. Caspar, E. M. Kober, B. P. Sullivan, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 630–632;
- 8bJ. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952–957;
- 8cM. Schulze, A. Steffen, F. Würthner, Angew. Chem. Int. Ed. 2015, 54, 1570–1573;
Angew. Chem. 2015, 127, 1590–1593.
10.1002/ange.201410437 Google Scholar
- 9
- 9aS. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev. 2010, 39, 189–227;
- 9bE. J. New, D. Parker, D. G. Smith, J. W. Walton, Curr. Opin. Chem. Biol. 2010, 14, 238–246;
- 9cE. Pershagen, K. E. Borbas, Coord. Chem. Rev. 2014, 273–274, 30–46;
- 9dC. Doffek, J. Wahsner, E. Kreidt, M. Seitz, Inorg. Chem. 2014, 53, 3263–3265;
- 9eA. J. Amoroso, S. J. A. Pope, Chem. Soc. Rev. 2015, 44, 4723–4742;
- 9fC. Doffek, M. Seitz, Angew. Chem. Int. Ed. 2015, 54, 9719–9721;
Angew. Chem. 2015, 127, 9856–9858.
10.1002/ange.201502475 Google Scholar
- 10
- 10aH. Xiang, J. Cheng, X. Ma, X. Zhou, J. J. Chruma, Chem. Soc. Rev. 2013, 42, 6128–6185;
- 10bA. D. Kirk, G. B. Porter, J. Phys. Chem. 1980, 84, 887–891;
- 10cN. Serpone, M. A. Jamieson, M. S. Henry, M. Z. Hoffman, F. Bolletta, M. Maestri, J. Am. Chem. Soc. 1979, 101, 2907–2916;
- 10dJ. C. Barbour, A. J. I. Kim, E. deVries, S. E. Shaner, B. M. Lovaasen, Inorg. Chem. 2017, 56, 8212–8222.
- 11
- 11aK. N. Brown, R. J. Geue, A. M. Sargeson, G. Moran, S. F. Ralph, H. Riesen, Chem. Commun. 1998, 2291–2292;
- 11bA. M. McDaniel, H.-W. Tseng, E. A. Hill, N. H. Damrauer, A. K. Rappé, M. P. Shores, Inorg. Chem. 2013, 52, 1368–1378.
- 12S. Otto, M. Grabolle, C. Förster, C. Kreitner, U. Resch-Genger, K. Heinze, Angew. Chem. Int. Ed. 2015, 54, 11572–11576;
Angew. Chem. 2015, 127, 11735–11739.
10.1002/ange.201504894 Google Scholar
- 13
- 13aA. Breivogel, C. Förster, K. Heinze, Inorg. Chem. 2010, 49, 7052–7056;
- 13bC. Förster, T. E. Gorelik, U. Kolb, V. Ksenofontov, K. Heinze, Eur. J. Inorg. Chem. 2015, 920–924;
- 13cC. Förster, K. Mack, L. M. Carrella, V. Ksenofontov, E. Rentschler, K. Heinze, Polyhedron 2013, 52, 576–581;
- 13dA. K. C. Mengel, W. Cho, A. Breivogel, K. Char, Y. Soo Kang, K. Heinze, Eur. J. Inorg. Chem. 2015, 3299–3306;
- 13eK. Mack, A. Wünsche von Leupoldt, C. Förster, M. Ezhevskaya, D. Hinderberger, K. W. Klinkhammer, K. Heinze, Inorg. Chem. 2012, 51, 7851–7858;
- 13fA. K. C. Mengel, C. Bissinger, M. Dorn, O. Back, C. Förster, K. Heinze, Chem. Eur. J. 2017, 23, 7920–7931;
- 13gA. K. C. Mengel, C. Förster, A. Breivogel, K. Mack, J. R. Ochsmann, F. Laquai, V. Ksenofontov, K. Heinze, Chem. Eur. J. 2015, 21, 704–714;
- 13hA. Breivogel, C. Kreitner, K. Heinze, Eur. J. Inorg. Chem. 2014, 5468–5490;
- 13iA. Breivogel, M. Park, D. Lee, S. Klassen, A. Kühnle, C. Lee, K. Char, K. Heinze, Eur. J. Inorg. Chem. 2014, 288–295;
- 13jA. Breivogel, M. Meister, C. Förster, F. Laquai, K. Heinze, Chem. Eur. J. 2013, 19, 13745–13760;
- 13kS. Otto, J. Moll, C. Förster, D. Geißler, C. Wang, U. Resch-Genger, K. Heinze, Eur. J. Inorg. Chem. 2017, 5033–5040;
- 13lM. Dorn, K. Mack, L. M. Carrella, E. Rentschler, C. Förster, K. Heinze, Z. Anorg. Allg. Chem. 2018, 644, 706–712.
- 14C. Wang, S. Otto, M. Dorn, E. Kreidt, J. Lebon, L. Sršan, P. Di Martino-Fumo, M. Gerhards, U. Resch-Genger, M. Seitz, K. Heinze, Angew. Chem. Int. Ed. 2018, 57, 1112–1116;
Angew. Chem. 2018, 130, 1125–1130.
10.1002/ange.201711350 Google Scholar
- 15
- 15aS. Otto, N. Scholz, T. Behnke, U. Resch-Genger, K. Heinze, Chem. Eur. J. 2017, 23, 12131–12135;
- 15bS. Otto, J. Harris, K. Heinze, C. Reber, Angew. Chem. Int Ed. 2018, in press 10.1002/anie.201806755.
- 16S. Otto, A. M. Nauth, E. Ermilov, N. Scholz, A. Friedrich, U. Resch-Genger, S. Lochbrunner, T. Opatz, K. Heinze, ChemPhotoChem 2017, 1, 344–349.
- 17S. Otto, M. Dorn, C. Förster, M. Bauer, M. Seitz, K. Heinze, Coord. Chem. Rev. 2018, 359, 102–111.
- 18K.-Y. Ho, W.-Y. Yu, K.-K. Cheung, C.-M. Che, J. Chem. Soc. Dalton Trans. 1999, 1581–1586.
- 19
- 19aH.-C. Chang, J.-T. Li, C.-C. Wang, T.-W. Lin, H.-C. Lee, G.-H. Lee, S.-M. Peng, Eur. J. Inorg. Chem. 1999, 1243–1251;
10.1002/(SICI)1099-0682(199908)1999:8<1243::AID-EJIC1243>3.0.CO;2-J CASWeb of Science®Google Scholar
- 19bA. Dirvanauskas, R. Galavotti, A. Lunghi, A. Nicolini, F. Roncaglia, F. Totti, A. Cornia, Dalton Trans. 2018, 47, 585–595;
- 19cS.-A. Hua, M.-C. Cheng, C.-H. Chen, S.-M. Peng, Eur. J. Inorg. Chem. 2015, 2510–2523.
- 20A. P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502–16513.
- 21M.-H. Yang, T.-W. Lin, C.-C. Chou, H.-C. Lee, H.-C. Chang, G.-H. Lee, M.-K. Leung, S.-M. Peng, Chem. Commun. 1997, 2279–2280.
- 22M. Maeda, K. Kato, J. Chem. Eng. Data 1995, 40, 253–256.
- 23
- 23aC. Würth, J. Pauli, C. Lochmann, M. Spieles, U. Resch-Genger, Anal. Chem. 2012, 84, 1345–1352;
- 23bC. Würth, M. G. González, R. Niessner, U. Panne, C. Haisch, U. R. Genger, Talanta 2012, 90, 30–37;
- 23cC. Würth, D. Geissler, T. Behnke, M. Kaiser, U. Resch-Genger, Anal. Bioanal. Chem. 2015, 407, 59–78.
- 24N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
- 25
- 25aSTOE & Cie, X-Red, STOE & Cie, Darmstadt, Germany 2002;
- 25bR. H. Blessing, Acta Crystallogr. Sect. A 1995, 51, 33–38;
- 25cA. L. Spek, Acta Crystallogr. Sect. D 2009, 65, 148–55.
- 26
- 26aG. M. Sheldrick. SHELXL-2014/7, University of Göttingen, Göttingen, Germany, 2014;
- 26bG. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- 27F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73–78.
- 28
- 28aF. Neese, F. Wennmohs, A. Hansen, U. Becker, Chem. Phys. 2009, 356, 98–109;
- 28bR. Izsák, F. Neese, J. Chem. Phys. 2011, 135, 144105.
- 29A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 30
- 30aA. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571–2577;
- 30bA. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835.
- 31
- 31aD. A. Pantazis, X.-Y. Chen, C. R. Landis, F. Neese, J. Chem. Theory Comput. 2008, 4, 908–919;
- 31bE. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys. 1993, 99, 4597–4610.
- 32
- 32aS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104;
- 32bS. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 33V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001.