Spontaneous Substitutions at Phosphorus Trihalides in Imidazolium Halide Ionic Liquids: Grotthuss Diffusion of Anions?
Corresponding Author
Dr. Oldamur Hollóczki
Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, 53115 Bonn, Germany
Search for more papers by this authorM. Sc. Alexander Wolff
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorM. Sc. Julia Pallmann
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorM. Sc. Rachel E. Whiteside
School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast, BT7 1NN UK
Search for more papers by this authorDr. Jennifer Hartley
Institute of Inorganic Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
Search for more papers by this authorM. Sc. Matthias A. Grasser
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Peter Nockemann
School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast, BT7 1NN UK
Search for more papers by this authorProf. Dr. Eike Brunner
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorProf. Dr. Thomas Doert
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorProf. Dr. Michael Ruck
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany
Search for more papers by this authorCorresponding Author
Dr. Oldamur Hollóczki
Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4+6, 53115 Bonn, Germany
Search for more papers by this authorM. Sc. Alexander Wolff
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorM. Sc. Julia Pallmann
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorM. Sc. Rachel E. Whiteside
School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast, BT7 1NN UK
Search for more papers by this authorDr. Jennifer Hartley
Institute of Inorganic Chemistry, TU Bergakademie Freiberg, 09599 Freiberg, Germany
Search for more papers by this authorM. Sc. Matthias A. Grasser
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorDr. Peter Nockemann
School of Chemistry and Chemical Engineering, Queen's University of Belfast, Belfast, BT7 1NN UK
Search for more papers by this authorProf. Dr. Eike Brunner
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorProf. Dr. Thomas Doert
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Search for more papers by this authorProf. Dr. Michael Ruck
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany
Search for more papers by this authorGraphical Abstract
Dynamic halide exchange: Phosphorus trihalides PX3 form [PX4]− anions in 1,3-dialkyl imidazolium halide ionic liquids (HMIM in scheme). The dynamic exchange of the anions at the phosphorus atom shows typical characteristics of a Grotthuss-like diffusion mechanism and potentially offers a way to design highly conducting materials.
Abstract
PX3 compounds (X=Cl, Br, I) in imidazolium halide ionic liquids combine with the anion Z (Z=Cl, Br, I) of the solvent to form [PX3Z]− complex anions. These anions have a sawhorse shape in which the lone pair of the phosphorus atom fills the third equatorial position of the pseudotrigonal bipyramid. Theoretical results show that this association remains incomplete due to strong hydrogen bonding with the cations of the ionic liquid, which competes with the phosphorus trihalide for interaction with the Z− anion. Temperature-dependent 31P NMR experiments indicated that the P−Z binding is weaker at higher temperature. Both theory and experiment evidence dynamic exchange of the halide anions at the phosphorus atom, together with continuous switching of the ligands at the phosphorus atom between equatorial and axial positions. Detailed knowledge of the mechanism of the spontaneous exchange of halogen atoms at phosphorus trihalides suggests a way to design novel, highly conducting ionic-liquid mixtures.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201803558-sup-0001-misc_information.pdf623.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier, Amsterdam, 2012.
- 2T. Welton, Chem. Rev. 1999, 99, 2071–2084.
- 3T. Welton, Green Chem. 2011, 13, 225.
- 4R. D. Rogers, K. R. Seddon, Science 2003, 302, 792–793.
- 5J. P. Hallett, T. Welton, Chem. Rev. 2011, 111, 3508–3576.
- 6S. Zahn, F. Uhlig, J. Thar, C. Spickermann, B. Kirchner, Angew. Chem. Int. Ed. 2008, 47, 3639–3641; Angew. Chem. 2008, 120, 3695–3697.
- 7P. A. Hunt, B. Kirchner, T. Welton, Chem. Eur. J. 2006, 12, 6762–6775.
- 8S. B. Lehmann, M. Roatsch, M. Schöppke, B. Kirchner, Phys. Chem. Chem. Phys. 2010, 12, 7473–7486.
- 9R. Elfgen, O. Hollóczki, B. Kirchner, Acc. Chem. Res. 2017, 50, 2949–2957.
- 10J. L. Anderson, D. W. Armstrong, Anal. Chem. 2003, 75, 4851–4858.
- 11K. J. Baranyai, G. B. Deacon, D. R. MacFarlane, J. M. Pringle, J. L. Scott, Aust. J. Chem. 2004, 57, 145–147.
- 12C. G. Cassity, A. Mirjafari, N. Mobarrez, K. J. Strickland, R. A. O'Brien, J. H. Davis, Chem. Commun. 2013, 49, 7590–7592.
- 13M. Kosmulski, J. Gustafsson, J. B. Rosenholm, Thermochim. Acta 2004, 412, 47–53.
- 14J. P. Hallett, C. L. Liotta, G. Ranieri, T. Welton, J. Org. Chem. 2009, 74, 1864–1868.
- 15E. Boros, M. J. Earle, M. A. Gilea, A. Metlen, A.-V. Mudring, F. Rieger, A. J. Robertson, K. R. Seddon, A. A. Tomaszowska, L. Trusov, J. S. Vyle, Chem. Commun. 2010, 46, 716–718.
- 16M. Maase, O. Huttenloch, BASIL Process, BASF SE, World Patent, WO2005/061416, 2005.
- 17E. J. Amigues, C. Hardacre, G. Keane, M. E. Migaud, S. E. Norman, W. R. Pitner, Green Chem. 2009, 11, 1391–1396.
- 18E. Amigues, C. Hardacre, G. Keane, M. Migaud, S. Norman, W. Pitner, ECS Trans. 2010, 33, 63–72.
- 19E. Amigues, C. Hardacre, G. Keane, M. Migaud, M. O'Neill, Chem. Commun. 2006, 72–74.
- 20A. Wolff, J. Pallmann, E. Brunner, T. Doert, M. Ruck, Z. Anorg. Allg. Chem. 2017, 643, 20–24.
- 21J. Estager, J. Holbrey, M. Swadzba-Kwasny, Chem. Soc. Rev. 2014, 43, 847–886.
- 22L. C. Brown, J. M. Hogg, M. Swadzba-Kwasny, Top. Curr. Chem. 2017, 375, 78.
- 23K. Fumino, T. Peppel, M. Geppert-Rybczynska, D. H. Zaitsau, J. K. Lehmann, S. P. Verevkin, M. Köckerling, R. Ludwig, Phys. Chem. Chem. Phys. 2011, 13, 14064–14075.
- 24T. Cremer, C. Kolbeck, K. R. J. Lovelock, N. Paape, R. Woelfel, P. S. Schulz, P. Wasserscheid, H. Weber, J. Thar, B. Kirchner, F. Maier, H.-P. Steinrück, Chem. Eur. J. 2010, 16, 9018–9033.
- 25A. Wulf, K. Fumino, R. Ludwig, Angew. Chem. Int. Ed. 2010, 49, 449–453; Angew. Chem. 2010, 122, 459–463.
- 26O. Hollóczki, D. Gerhard, K. Massone, L. Szarvas, B. Németh, T. Veszprémi, L. Nyulászi, New J. Chem. 2010, 34, 3004–3009.
- 27H. Rodríguez, G. Gurau, J. D. Holbrey, R. D. Rogers, Chem. Commun. 2011, 47, 3222–3224.
- 28O. Hollóczki, Inorg. Chem. 2014, 53, 835–846.
- 29S. Wellens, N. R. Brooks, B. Thijs, L. Van Meervelt, K. Binnemans, Dalton Trans. 2014, 43, 3443–3452.
- 30K. Dillon, A. Platt, A. Schmidpeter, F. Zwaschka, W. Sheldrick, Z. Anorg. Allg. Chem. 1982, 488, 7–26.
- 31J. S. Wilkes, J. A. Levisky, R. A. Wilson, C. L. Hussey, Inorg. Chem. 1982, 21, 1263–1264.
- 32A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 2001, 105, 4603–4610.
- 33B. Kirchner, A. P. Seitsonen, Inorg. Chem. 2007, 46, 2751–2754.
- 34F. Schäfers, JLSRF 2016, 2, 96.
10.17815/jlsrf-2-92 Google Scholar
- 35F. Neese, WIREs Comput. Mol. Sci. 2012, 2, 73–78.
- 36A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 37C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 38B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200–206.
- 39S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 40S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.
- 41F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 42T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 43C. Ehrhardt, R. Ahlrichs, Theor. Chim. Acta 1985, 68, 231–245.
- 44O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346–354.
- 45F. Weigend, Phys. Chem. Chem. Phys. 2002, 4, 4285–4291.
- 46R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165–169.
- 47J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167, 103–128.
- 48A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- 49J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127, 114105.
- 50S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54, 1703.
- 51C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 1998, 58, 3641.
- 52M. Krack, Theor. Chem. Acc. 2005, 114, 145–152.
- 53L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, J. Comput. Chem. 2009, 30, 2157–2164.
- 54M. Brehm, B. Kirchner, J. Cheminf. 2012, 4, F 1.
- 55R. A. Nyquist, Appl. Spectrosc. 1987, 41, 272–279.
- 56G. C. Pimentel, J. Chem. Phys. 1951, 19, 446–448.
- 57R. S. Berry, J. Chem. Phys. 1960, 32, 933–938.
- 58A. Burcat, Combust. Flame 2017, 182, 238–247.
- 59A. A. Fannin Jr, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, J. L. Williams, J. Phys. Chem. 1984, 88, 2614–2621.
- 60J. R. Sanders, E. H. Ward, C. L. Hussey, J. Electrochem. Soc. 1986, 133, 325–330.
- 61H. Weber, O. Hollóczki, A. S. Pensado, B. Kirchner, J. Chem. Phys. 2013, 139, 084502.
- 62M. Shukla, N. Srivastava, S. Saha, J. Mol. Struct. 2010, 975, 349–356.