Application of In Situ Product Crystallization and Related Techniques in Biocatalytic Processes
Dennis Hülsewede
Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, A-Einstein-Str. 3A, 18059 Rostock, Germany
These authors contributed equally to this work.
Search for more papers by this authorLars-Erik Meyer
Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, A-Einstein-Str. 3A, 18059 Rostock, Germany
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Jan von Langermann
Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, A-Einstein-Str. 3A, 18059 Rostock, Germany
Search for more papers by this authorDennis Hülsewede
Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, A-Einstein-Str. 3A, 18059 Rostock, Germany
These authors contributed equally to this work.
Search for more papers by this authorLars-Erik Meyer
Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, A-Einstein-Str. 3A, 18059 Rostock, Germany
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Jan von Langermann
Biocatalytic Synthesis Group, Institute of Chemistry, University of Rostock, A-Einstein-Str. 3A, 18059 Rostock, Germany
Search for more papers by this authorGraphical Abstract
Crystallization and biocatalysis: In situ product crystallization is a powerful technique to overcome fundamental limitations in biocatalytic reactions, for example, unfavorable reaction equilibria or product inhibitions (see figure). This Minireview presents basic process considerations within (early) process development and illustrates the high potential of crystallization with selected examples.
Abstract
This Minireview highlights the application of crystallization as a very powerful in situ product removal (ISPR) technique in biocatalytic process design. Special emphasis is placed on its use for in situ product crystallization (ISPC) to overcome unfavorable thermodynamic reaction equilibria, inhibition, and undesired reactions. The combination of these unit operations requires an interdisciplinary perspective to find a holistic solution for the underlying bioprocess intensification approach. Representative examples of successful integrated process options are selected, presented, and assessed regarding their overall productivity and applicability. In addition, parallels to the use of adsorption as a very similar technique are drawn and similarities discussed.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aA. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature 2001, 409, 258–268;
- 1bD. J. Pollard, J. M. Woodley, Trends Biotechnol. 2007, 25, 66–73;
- 1cM. T. Reetz, J. Am. Chem. Soc. 2013, 135, 12480–12496.
- 2
- 2aR. Wohlgemuth, New Biotechnol. 2009, 25, 204–213;
- 2bH. E. Schoemaker, D. Mink, M. G. Wubbolts, Science 2003, 299, 1694–1697.
- 3
- 3aA. J. J. Straathof, S. Panke, A. Schmid, Curr. Opin. Biotechnol. 2002, 13, 548–556;
- 3bK. Faber, Biotransformations in Organic Chemistry: A Textbook, Springer, Cham, 2018.
- 4 Industrial Biotransformations (Eds.: ), Wiley-VCH, Weinheim, 2006.
- 5U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Nature 2012, 485, 185–194.
- 6
- 6aR. A. Sheldon, Green Chem. 2005, 7, 267–278;
- 6bR. A. Sheldon, J. M. Woodley, Chem. Rev. 2018, 118, 801–838.
- 7
- 7aR. A. Sheldon, Chem. Soc. Rev. 2012, 41, 1437–1451;
- 7bP. D. de María, F. Hollmann, Front. Microbiol. 2015, 6, 1257.
- 8
- 8aY. Satyawali, K. Vanbroekhoven, W. Dejonghe, Biochem. Eng. J. 2017, 121, 196–223;
- 8bA. A. Kiss, J. Grievink, M. Rito-Palomares, J. Chem. Technol. Biotechnol. 2015, 90, 349–355;
- 8cM. Nordblad, M. D. Gomes, M. P. Meissner, H. Ramesh, J. M. Woodley, Org. Process Res. Dev. 2018, 22, 1101–1114.
- 9J. M. Woodley, Comput. Chem. Eng. 2017, 105, 297–307.
- 10
- 10aO. Kirk, T. V. Borchert, C. C. Fuglsang, Curr. Opin. Biotechnol. 2002, 13, 345–351;
- 10bF. H. Arnold, Nature 2001, 409, 253–257.
- 11C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman, G. J. Hughes, Science 2010, 329, 305–309.
- 12
- 12aS. Ostergaard, L. Olsson, J. Nielsen, Microbiol. Mol. Biol. Rev. 2000, 64, 34–50;
- 12bJ. D. Keasling, Science 2010, 330, 1355–1358.
- 13A. M. Kunjapur, Y. Tarasova, K. L. J. Prather, J. Am. Chem. Soc. 2014, 136, 11644–11654.
- 14F. O. Ütkür, T. T. Tran, J. Collins, C. Brandenbusch, G. Sadowski, A. Schmid, B. Bühler, J. Ind. Microbiol. Biotechnol. 2012, 39, 1049–1059.
- 15
- 15aJ. M. Sperl, V. Sieber, ACS Catal. 2018, 8, 2385–2396;
- 15bF. Rudroff, M. D. Mihovilovic, H. Gröger, R. Snajdrova, H. Iding, U. T. Bornscheuer, Nat. Catal. 2018, 1, 12–22;
- 15cR. Abu, J. M. Woodley, ChemCatChem 2015, 7, 3094–3105;
- 15dC. Garcia-Galan, Á. Berenguer-Murcia, R. Fernandez-Lafuente, R. C. Rodrigues, Adv. Synth. Catal. 2011, 353, 2885–2904;
- 15eR. A. Sheldon, S. van Pelt, Chem. Soc. Rev. 2013, 42, 6223–6235.
- 16
- 16aL.-E. Meyer, J. von Langermann, U. Kragl, Biophys. Rev. 2018, 10, 901–910;
- 16bR. A. Sheldon, R. M. Lau, M. J. Sorgedrager, F. van Rantwijk, K. R. Seddon, Green Chem. 2002, 4, 147–151.
- 17P. J. Halling, Enzyme Microb. Technol. 1994, 16, 178–206.
- 18
- 18aA. C. Spieß, W. Eberhard, M. Peters, M. F. Eckstein, L. Greiner, J. Büchs, Chem. Eng. Process. 2008, 47, 1034–1041;
- 18bM. F. Eckstein, J. Lembrecht, J. Schumacher, W. Eberhard, A. C. Spiess, M. Peters, C. Roosen, L. Greiner, W. Leitner, U. Kragl, Adv. Synth. Catal. 2006, 348, 1597–1604;
- 18cM. F. Eckstein, M. Peters, J. Lembrecht, A. C. Spiess, L. Greiner, Adv. Synth. Catal. 2006, 348, 1591–1596.
- 19
- 19aN. Zumbrägel, H. Gröger, Bioengineering 2018, 5, 60;
- 19bH. Sato, W. Hummel, H. Gröger, Angew. Chem. Int. Ed. 2015, 54, 4488–4492;
- 20D. Uhrich, J. von Langermann, Front. Microbiol. 2017, 8, 2111.
- 21L. Klermund, K. Castiglione, Bioprocess Biosyst. Eng. 2018, 41, 1233–1246.
- 22
- 22aG. J. Lye, J. M. Woodley, Trends Biotechnol. 1999, 17, 395–402;
- 22bV. Outram, C.-A. Lalander, J. G. M. Lee, E. T. Davis, A. P. Harvey, Bioresour. Technol. 2016, 220, 590–600;
- 22cJ. Fiedurek, M. Trytek, M. Skowronek, Curr. Org. Chem. 2012, 16, 2946–2960;
- 22dM. Bechtold, S. Panke, Chimia 2009, 63, 345–348;
- 22eW. van Hecke, G. Kaur, H. de Wever, Biotechnol. Adv. 2014, 32, 1245–1255;
- 22fJ. M. Woodley in Synthetic Methods for Biologically Active Molecules: Exploring the Potential of Bioreductions (Ed.: ), Wiley-VCH, Weinheim, 2014, pp. 263–284.
- 23J. M. Woodley, M. Bisschops, A. J. J. Straathof, M. Ottens, J. Chem. Technol. Biotechnol. 2008, 83, 121–123.
- 24E. M. Buque-Taboada, A. J. J. Straathof, J. J. Heijnen, L. A. M. van der Wielen, Appl. Microbiol. Biotechnol. 2006, 71, 1–12.
- 25J. Urbanus, C. P. M. Roelands, D. Verdoes, J. H. ter Horst, Chem. Eng. Sci. 2012, 77, 18–25.
- 26G. Coquerel, Chem. Soc. Rev. 2014, 43, 2286–2300.
- 27
- 27aV. V. Kelkar, K. M. Ng, AIChE J. 1999, 45, 69–81;
- 27bD. A. Berry, K. M. Ng, AIChE J. 1997, 43, 1737–1750.
- 28
- 28aJ. W. Mullin, Crystallization, Elsevier 2001;
- 28bN. S. Tavare, Industrial Crystallization: Process Simulation Analysis and Design, Springer, Boston 1995.
- 29E. M. Buque-Taboada, A. J. J. Straathof, J. J. Heijnen, L. A. M. van der Wielen, Biotechnol. Bioeng. 2004, 86, 795–800.
- 30P. Tufvesson, J. Lima-Ramos, M. Nordblad, J. M. Woodley, Org. Process Res. Dev. 2011, 15, 266–274.
- 31R. A. Sheldon, Green Chem. 2007, 9, 1273–1283.
- 32B.-K. Cho, J.-H. Seo, T.-W. Kang, B.-G. Kim, Biotechnol. Bioeng. 2003, 83, 226–234.
- 33B.-K. Cho, J.-H. Seo, J. Kim, C.-S. Lee, B.-G. Kim, Biotechnol. Bioprocess Eng. 2006, 11, 299–305.
- 34S. Hanzawa, S. Oe, K. Tokuhisa, K. Kawano, T. Kobayashi, T. Kudo, H. Kakidani, Biotechnol. Lett. 2001, 23, 589–591.
- 35K. Würges, U. Mackfeld, M. Pohl, S. Lütz, S. Wilhelm, W. Wiechert, T. Kubitzki, Adv. Synth. Catal. 2011, 353, 2431–2438.
- 36K. Würges, K. Petrusevska-Seebach, M. P. Elsner, S. Lütz, Biotechnol. Bioeng. 2009, 104, 1235–1239.
- 37L. G. Encarnación-Gómez, A. S. Bommarius, R. W. Rousseau, Chem. Eng. Sci. 2015, 122, 416–425.
- 38T. Nagasawa, C. D. Mathew, J. Mauger, H. Yamada, Appl. Environ. Microbiol. 1988, 54, 1766–1769.
- 39A. P. G. M. van Loon, H. P. Hohmann, W. Bretzel, M. Hümbelin, M. Pfister, Chimia 1996, 50, 410–412.
- 40J. Ren, P. Yao, S. Yu, W. Dong, Q. Chen, J. Feng, Q. Wu, D. Zhu, ACS Catal. 2016, 6, 564–567.
- 41D. Hülsewede, M. Tänzler, P. Süss, A. Mildner, U. Menyes, J. von Langermann, Eur. J. Org. Chem. 2018, 2130–2133.
- 42J. H. Schrittwieser, S. Velikogne, M. Hall, W. Kroutil, Chem. Rev. 2018, 118, 270–348.
- 43H. G. Kulla, Chimia 1991, 45, 81–85.
- 44
- 44aT. Yamane, R. Tanaka, J. Biosci. Bioeng. 2013, 115, 90–95;
- 44bY. Wang, D. Cai, C. Chen, Z. Wang, P. Qin, T. Tan, Bioresour. Technol. 2015, 198, 658–663;
- 44cM.-T. Gao, M. Hirata, E. Toorisaka, T. Hano, Chem. Eng. Process. 2009, 48, 464–469.
- 45M. I. Youshko, L. M. van Langen, E. de Vroom, H. M. Moody, F. van Rantwijk, R. A. Sheldon, V. K. Švedas, J. Mol. Catal. B Enzym. 2000, 10, 509–515.
- 46M. I. Youshko, L. M. van Langen, E. de Vroom, F. van Rantwijk, R. A. Sheldon, V. K. Svedas, Biotechnol. Bioeng. 2001, 73, 426–430.
- 47M. I. Youshko, L. M. van Langen, E. de Vroom, F. van Rantwijk, R. A. Sheldon, V. K. Svedas, Biotechnol. Bioeng. 2002, 78, 589–593.
- 48A. L. O. Ferreira, R. L. C. Giordano, R. C. Giordano, Ind. Eng. Chem. Res. 2007, 46, 7695–7702.
- 49L. G. Encarnación-Gómez, A. S. Bommarius, R. W. Rousseau, React. Chem. Eng. 2016, 1, 321–329.
- 50M. A. McDonald, A. S. Bommarius, R. W. Rousseau, Chem. Eng. Sci. 2017, 165, 81–88.
- 51J. Urbanus, C. P. M. Roelands, D. Verdoes, P. J. Jansens, J. H. ter Horst, Cryst. Growth Des. 2010, 10, 1171–1179.
- 52H. G. W. Leuenberger, W. Boguth, E. Widmer, R. Zell, Helv. Chim. Acta 1976, 59, 1832–1849.
- 53E. M. Buque-Taboada, A. J. J. Straathof, J. J. Heijnen, L. A. M. van der Wielen, Adv. Synth. Catal. 2005, 347, 1147–1154.
- 54M. Furui, N. Sakata, O. Otsuki, T. Tosa, Biocatalysis 1988, 2, 69–77.
- 55J. Bao, K. Koumatsu, K. Furumoto, M. Yoshimoto, K. Fukunaga, K. Nakao, Chem. Eng. Sci. 2001, 56, 6165–6170.
- 56K. Xu, P. Xu, Bioresour. Technol. 2014, 163, 33–39.
- 57
- 57aJ. Urbanus, C. P. M. Roelands, J. Mazurek, D. Verdoes, J. H. ter Horst, CrystEngComm 2011, 13, 2817–2819;
- 57bJ. Urbanus, R. J. M. Bisselink, K. Nijkamp, J. H. ter Horst, D. Verdoes, C. P. M. Roelands, J. Membr. Sci. 2010, 363, 36–47.
- 58T. Nasrollahnejad, J. Urbanus, J. H. ter Horst, D. Verdoes, C. P. M. Roelands, Ind. Biotechnol. 2012, 8, 133–151.
- 59
- 59aL. Yang, D. Wei, Y. Zhang, J. Chem. Technol. Biotechnol. 2004, 79, 480–485;
- 59bD. Wei, L. Yang, Q. Song, J. Mol. Catal. B: Enzym. 2003, 26, 99–104;
- 59cD. Li, Y. Zhang, S. Cheng, Q. Gao, D. Wei, Food Technol. Biotechnol. 2008, 46, 461–466.
- 60L.-E. Meyer, K. Plasch, U. Kragl, J. von Langermann, Org. Process Res. Dev. 2018, 22, 963–970.
- 61
- 61aJ. Mei, H. Min, Z. Lü, Process Biochem. 2009, 44, 886–890;
- 61bD. Hua, S. Lin, Y. Li, H. Chen, Z. Zhang, Y. Du, X. Zhang, P. Xu, Biocatal. Biotransform. 2010, 28, 259–266;
- 61cJ. Bae, H. Moon, K. K. Oh, C. H. Kim, D. S. Lee, S. W. Kim, S. I. Hong, Biotechnol. Lett. 2001, 23, 1315–1319;
- 61dY.-P. Xue, Z.-Q. Liu, M. Xu, Y.-J. Wang, Y.-G. Zheng, Y.-C. Shen, Biochem. Eng. J. 2010, 53, 143–149;
- 61eH. D. Simpson, V. Alphand, R. Furstoss, J. Mol. Catal. B Enzym. 2001, 16, 101–108;
- 61fC. van den Berg, N. Wierckx, J. Vente, P. Bussmann, J. de Bont, L. van der Wielen, Biotechnol. Bioeng. 2008, 100, 466–472;
- 61gS.-P. Zou, E.-H. Du, Z.-C. Hu, Y.-G. Zheng, Biotechnol. Lett. 2013, 35, 937–942;
- 61hR. R. R. Sardari, T. Dishisha, S.-H. Pyo, R. Hatti-Kaul, J. Biotechnol. 2014, 192, 223–230.
- 62
- 62aP. Wang, Y. Wang, Z. Su, Appl. Biochem. Biotechnol. 2012, 166, 974–986;
- 62bP. Wang, Y. Wang, Y. Liu, H. Shi, Z. Su, Bioresour. Technol. 2012, 104, 652–659;
- 62cS. Bajracharya, B. van den Burg, K. Vanbroekhoven, H. de Wever, C. J. N. Buisman, D. Pant, D. P. B. T. B. Strik, Electrochim. Acta 2017, 237, 267–275;
- 62dM. García-García, I. Martínez-Martínez, A. Sánchez-Ferrer, F. García-Carmona, Biotechnol. Prog. 2008, 24, 187–191.
- 63
- 63aZ. Zhou, Z. Yao, H. Q. Wang, H. Xu, P. Wei, P. K. Ouyang, Biotechnol. Bioprocess Eng. 2011, 16, 611–616;
- 63bK. Zhang, S.-T. Yang, Biochem. Eng. J. 2015, 96, 38–45;
- 63cJ. M. Monteagudo, M. Aldavero, J. Chem. Technol. Biotechnol. 1999, 74, 627–634.
- 64T. Phillips, M. Chase, S. Wagner, C. Renzi, M. Powell, J. DeAngelo, P. Michels, J. Ind. Microbiol. Biotechnol. 2013, 40, 411–425.
- 65
- 65aM. A. Mirata, D. Heerd, J. Schrader, Process Biochem. 2009, 44, 764–771;
- 65bM. A. Mirata, H. Schewe, D. Holtmann, J. Schrader, Chem. Ing. Tech. 2010, 82, 101–109.