Synthesis and Structure Determination of SCM-15: A 3D Large Pore Zeolite with Interconnected Straight 12×12×10-Ring Channels
Dr. Yi Luo
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai, 201208 China
Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
College of Chemistry & Molecular Engineering, Peking University, No.5 Yiheyuan Road, Beijing, 100871 China
Search for more papers by this authorDr. Stef Smeets
Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Dr. Zhendong Wang
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai, 201208 China
Search for more papers by this authorCorresponding Author
Prof. Junliang Sun
Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
College of Chemistry & Molecular Engineering, Peking University, No.5 Yiheyuan Road, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Weimin Yang
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai, 201208 China
Search for more papers by this authorDr. Yi Luo
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai, 201208 China
Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
College of Chemistry & Molecular Engineering, Peking University, No.5 Yiheyuan Road, Beijing, 100871 China
Search for more papers by this authorDr. Stef Smeets
Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Dr. Zhendong Wang
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai, 201208 China
Search for more papers by this authorCorresponding Author
Prof. Junliang Sun
Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
College of Chemistry & Molecular Engineering, Peking University, No.5 Yiheyuan Road, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Prof. Weimin Yang
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 Pudong Beilu, Shanghai, 201208 China
Search for more papers by this authorGraphical Abstract
The first zeolite containing a 3D channel system with interconnected 12×12×10-ring channels, named as SCM-15 (Sinopec Composite Material No. 15), has been synthesized using a commercially available organic structure-directing agent. The good thermal stability and the unique channel system may give SCM-15 great potential for catalytic and adsorptive applications.
Abstract
A new germanosilicate zeolite named SCM-15 (Sinopec Composite Material No. 15), the first zeolite containing a 3-dimensional (3D) channel system with interconnected 12-, 12-, and 10-ring channels (pore sizes: 6.1×7.2, 6.1×7.4, and 5.2×5.9 Å), has been synthesized using neutral 4-pyrrolidinopyridine as organic structure-directing agents (OSDAs). Its structure has been determined by combining single-crystal electron diffraction (SCED) and synchrotron powder X-ray diffraction (SPXD) data. The unique open framework structure of SCM-15 is related to that of FOS-5 (BEC), ITQ-7 (ISV), PKU-16 (POS), ITQ-26 (IWS), ITQ-21, Beta polymorph B, and SU-78B, since all these framework structures can be constructed from similar chains which are connected through shared 4-ring or double 4-ring (d4r) units. Based on this relation, six topologically reasonable 3D large or extra-large pore hypothetical zeolites are predicted.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201805187-sup-0001-misc_information.pdf3.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. E. Davis, Nature 2002, 417, 813–821.
- 2M. E. Davis, Chem. Mater. 2014, 26, 239–245.
- 3W. Vermeiren, J.-P. Gilson, Top. Catal. 2009, 52, 1131–1161.
- 4L. Tosheva, V. P. Valtchev, Chem. Mater. 2005, 17, 2494–2513.
- 5R. F. Lobo, S. I. Zones, M. E. Davis, J. Inclusion Phenom. Mol. Recognit. Chem. 1995, 21, 47–78.
- 6S. I. Zones, Microporous Mesoporous Mater. 2011, 144, 1–8.
- 7T. Willhammar, J. Sun, W. Wan, P. Oleynikov, D. Zhang, X. Zou, M. Moliner, J. Gonzalez, C. Martínez, F. Rey, A. Corma, Nat. Chem. 2012, 4, 188–194.
- 8R. F. Lobo, M. E. Davis, J. Am. Chem. Soc. 1995, 117, 3766–3779.
- 9C. Baerlocher, L. B. McCusker, Database of Zeolite Structures, http://europe.izastructure.org/IZASC/framework.php?STC=CON.
- 10C. Baerlocher, L. B. McCusker, Database of Zeolite Structures, http://europe.iza-structure.org/IZASC/material_tm.php?STC=IWR.
- 11P. A. Wright, R. H. Jones, S. Natarajan, R. G. Bell, J. Chen, M. B. Hursthouse, J. M. Thomas, J. Chem. Soc. Chem. Commun. 1993, 633–635.
- 12M. Moliner, T. Willhammar, W. Wan, J. González, F. Rey, J. L. Jorda, X. Zou, A. Corma, J. Am. Chem. Soc. 2012, 134, 6473–6478.
- 13Y. Lorgouilloux, M. Dodin, E. Mugnaioli, C. Marichal, P. Caullet, N. Bats, U. Kolb, J.-L. Paillaud, RSC Adv. 2014, 4, 19440–19449.
- 14D. L. Dorset, S. C. Weston, S. S. Dhingra, J. Phys. Chem. B 2006, 110, 2045–2050.
- 15M. Dodin, J.-L. Paillaud, Y. Lorgouilloux, P. Caullet, E. Elkaïm, N. Bats, J. Am. Chem. Soc. 2010, 132, 10221–10223.
- 16Y. Luo, S. Smeets, F. Peng, A. S. Etman, Z. Wang, J. Sun, W. Yang, Chem. Eur. J. 2017, 23, 16829–16834.
- 17J. Simancas, R. Simancas, P. J. Bereciartua, J. L. Jorda, F. Rey, A. Corma, S. Nicolopoulos, P. P. Das, M. Gemmi, E. Mugnaioli, J. Am. Chem. Soc. 2016, 138, 10116–10119.
- 18T. Conradsson, M. S. Dadachov, X. D. Zou, Microporous Mesoporous Mater. 2000, 41, 183–191.
- 19L. A. Villaescusa, P. A. Barrett, M. A. Camblor, Angew. Chem. Int. Ed. 1999, 38, 1997–2000;
10.1002/(SICI)1521-3773(19990712)38:13/14<1997::AID-ANIE1997>3.0.CO;2-U CASPubMedWeb of Science®Google ScholarAngew. Chem. 1999, 111, 2164–2167.10.1002/(SICI)1521-3757(19990712)111:13/14<2164::AID-ANGE2164>3.0.CO;2-X Google Scholar
- 20W. Hua, H. Chen, Z.-B. Yu, X. Zou, J. Lin, J. Sun, Angew. Chem. Int. Ed. 2014, 53, 5868–5871;
Angew. Chem. 2014, 126, 5978–5981.
10.1002/ange.201309766 Google Scholar
- 21D. L. Dorset, K. G. Strohmaier, C. E. Kliewer, A. Corma, M. J. Díaz-Cabañas, F. Rey, C. J. Gilmore, Chem. Mater. 2008, 20, 5325–5331.
- 22A. Corma, M. J. Díaz-Cabañas, J. Martínez-Triguero, F. Rey, J. Rius, Nature 2002, 418, 514–517.
- 23J. M. Newsam, M. M. J. Treacy, W. T. Koetsier, C. B. D. Gruyter, Proc. R. Soc. London Ser. A 1988, 420, 375–405.
- 24Z.-B. Yu, Y. Han, L. Zhao, S. Huang, Q.-Y. Zheng, S. Lin, A. Córdova, X. Zou, J. Sun, Chem. Mater. 2012, 24, 3701–3706.
- 25A. Pulido, G. Sastre, A. Corma, ChemPhysChem 2006, 7, 1092–1099.
- 26R. T. Rigo, S. R. G. Balestra, S. Hamad, R. Bueno-Perez, A. R. Ruiz-Salvador, S. Calero, M. A. Camblor, J. Mater. Chem. A 2018, 6, 15110–15122.
- 27T. Blasco, A. Corma, M. J. Díaz-Cabañas, F. Rey, J. A. Vidal-Moya, C. M. Zicovich-Wilson, J. Phys. Chem. B 2002, 106, 2634–2642.
- 28C.-Y. Chen, L. W. Finger, R. C. Medrud, C. L. Kibby, P. A. Crozier, I. Y. Chan, T. V. Harris, L. W. Beck, S. I. Zones, Chem. Eur. J. 1998, 4, 1312–1323.
- 29W. Kabsch, Acta Crystallogr. Sect. D 2010, 66, 125–132.
- 30S. Smeets, L. B. McCusker, C. Baerlocher, E. Mugnaioli, U. Kolb, J. Appl. Crystallogr. 2013, 46, 1017–1023.
- 31M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, J. Appl. Crystallogr. 2015, 48, 306–309.
- 32G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122.
- 33A. A. Coelho, J. Appl. Crystallogr. 2018, 51, 210–218.
- 34S. Smeets, L. B. McCusker, C. Baerlocher, S. Elomari, D. Xie, S. I. Zones, J. Am. Chem. Soc. 2016, 138, 7099–7106.
- 35Y. Wang, S. Takki, O. Cheung, H. Xu, W. Wan, L. Öhrström, A. K. Inge, Chem. Commun. 2017, 53, 7018–7021.
- 36W. Wan, J. Sun, J. Su, S. Hovmöller, X. Zou, J. Appl. Crystallogr. 2013, 46, 1863–1873.