Atomically Precise Bimetallic Nanoclusters as Photosensitizers in Photoelectrochemical Cells
Corresponding Author
Dr. Yu Wang
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
These authors contributed equally to this work.
Search for more papers by this authorXiao-He Liu
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
International Research Center for Renewable Energy (IRCRE) and, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Sergey A. Kovalenko
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
Search for more papers by this authorProf. Qing-Yun Chen
International Research Center for Renewable Energy (IRCRE) and, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Nicola Pinna
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
Search for more papers by this authorCorresponding Author
Dr. Yu Wang
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
These authors contributed equally to this work.
Search for more papers by this authorXiao-He Liu
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
International Research Center for Renewable Energy (IRCRE) and, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Sergey A. Kovalenko
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
Search for more papers by this authorProf. Qing-Yun Chen
International Research Center for Renewable Energy (IRCRE) and, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Nicola Pinna
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
Search for more papers by this authorGraphical Abstract
Abstract
The atomically precise bimetallic nanocluster (NC), Au24Ag20(PhCC)20(SPy)4Cl2 (1) (Py=pyridine), was employed for the first time as a stable photosensitizer for photoelectrochemical applications. The sensitization of TiO2 nanotube arrays (TNA) with 1 greatly enhances the light-harvesting ability of the composite because 1 shows a high molar extinction coefficient (ϵ) in the UV/Vis region. Compared to a more standard Au25(SG)18-TNA (2-TNA; SG=glutathione) composite, 1-TNA shows a much better stability under illumination in both neutral and basic conditions. The precise composition of the photosensitizers enables a direct comparison of the sensitization ability between 1 and 2. With the same cluster loading, the photocurrent produced by 1-TNA is 15 times larger than that of 2-TNA. The superior performance of 1-TNA over 2-TNA is attributed not only to the higher light absorption ability of 1 but also to the higher charge-separation efficiency. Besides, a ligand effect on the stability of the photoelectrode and charge-transfer between the NCs and the semiconductor is revealed. This work paves the way to study the role of metal nanoclusters as photosensitizers at the atomic level, which is essential for the design of better material for light energy conversion.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201900008-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346.
- 2I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208.
- 3A. W. Cook, T. W. Hayton, Acc. Chem. Res. 2018, 51, 2456.
- 4B. K. Teo, J. Cluster Sci. 2014, 25, 5.
- 5P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, R. D. Kornberg, Science 2007, 318, 430.
- 6A. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landman, T. P. Bigioni, Nature 2013, 501, 399.
- 7H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Häkkinen, N. F. Zheng, Nat. Commun. 2013, 4, 2422.
- 8M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G. L. Hura, A. L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Häkkinen, R. D. Kornberg, Science 2014, 345, 909.
- 9S. Sharma, K. K. Chakrahari, J.-Y. Saillard, C. W. Liu, Acc. Chem. Res. 2018, 51, 2475.
- 10Q.-F. Zhang, X. Chen, L.-S. Wang, Acc. Chem. Res. 2018, 51, 2159.
- 11S. Yamazoe, K. Koyasu, T. Tsukuda, Acc. Chem. Res. 2014, 47, 816.
- 12L. Liao, S. Zhou, Y. Dai, L. Liu, C. Yao, C. Fu, J. Yang, Z. Wu, J. Am. Chem. Soc. 2015, 137, 9511.
- 13S. Wang, S. Jin, S. Yang, S. Chen, Y. Song, J. Zhang, M. Zhu, Sci. Adv. 2015, 1, e 1500441.
- 14Y. Wang, X.-K. Wan, L. T. Ren, H. F. Su, G. Li, S. Malola, S. C. Lin, Z. C. Tang, H. Häkkinen, B. K. Teo, Q. M. Wang, N. F. Zheng, J. Am. Chem. Soc. 2016, 138, 3278.
- 15W. Du, S. Jin, L. Xiong, M. Chen, J. Zhang, X. Zou, Y. Pei, S. Wang, M. Zhu, J. Am. Chem. Soc. 2017, 139, 1618.
- 16X.-K. Wan, J.-Q. Wang, Z.-A. Nan, Q.-M. Wang, Sci. Adv. 2017, 3, e 1701823.
- 17Q. Yao, X. Yuan, T. Chen, D. T. Leong, J. Xie, Adv. Mater. 2018, 30, 1802751.
- 18S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu, R. Jin, Angew. Chem. Int. Ed. 2014, 53, 2376;
Angew. Chem. 2014, 126, 2408.
10.1002/ange.201307480 Google Scholar
- 19G. Soldan, M. A. Aljuhani, M. S. Bootharaju, L. G. AbdulHalim, M. R. Parida, A.-H. Emwas, O. F. Mohammed, O. M. Bakr, Angew. Chem. Int. Ed. 2016, 55, 5749;
Angew. Chem. 2016, 128, 5843.
10.1002/ange.201600267 Google Scholar
- 20Y.-S. Chen, H. Choi, P. V. Kamat, J. Am. Chem. Soc. 2013, 135, 8822.
- 21Y.-S. Chen, P. V. Kamat, J. Am. Chem. Soc. 2014, 136, 6075.
- 22H. Choi, Y.-S. Chen, K. G. Stamplecoskie, P. V. Kamat, J. Phys. Chem. Lett. 2015, 6, 217.
- 23F.-X. Xiao, Z. Zeng, B. Liu, J. Am. Chem. Soc. 2015, 137, 10735.
- 24N. Sakai, T. Tatsuma, Adv. Mater. 2010, 22, 3185.
- 25A. Kogo, N. Sakai, T. Tatsuma, Nanoscale 2012, 4, 4217.
- 26C. Yu, G. Li, S. Kumar, H. Kawasaki, R. Jin, J. Phys. Chem. Lett. 2013, 4, 2847.
- 27C. Azarias, C. Adamo, A. Perrier, Phys. Chem. Chem. Phys. 2016, 18, 7737.
- 28Y. Liu, Q. Yao, X. Wu, T. Chen, Y. Ma, C. N. Ong, J. Xie, Nanoscale 2016, 8, 10145.
- 29S. A. Miller, J. M. Womick, J. F. Parker, R. W. Murray, A. M. Moran, J. Phys. Chem. C 2009, 113, 9440.
- 30H. F. Qian, M. Y. Sfeir, R. C. Jin, J. Phys. Chem. C 2010, 114, 19935.
- 31M. Pelton, Y. Tang, O. M. Bakr, F. Stellacci, J. Am. Chem. Soc. 2012, 134, 11856.
- 32S. H. Yau, O. Varnavski, T. Goodson III, Acc. Chem. Res. 2013, 46, 1506.
- 33K. G. Stamplecoskie, Y.-S. Chen, P. V. Kamat, J. Phys. Chem. C 2014, 118, 1370.
- 34S. M. Aly, L. G. AbdulHalim, T. M. D. Besong, G. Soldan, O. M. Bakr, O. F. Mohammed, Nanoscale 2016, 8, 5412.
- 35S. H. Yau, B. A. Ashenfelter, A. Desireddy, A. P. Ashwell, O. Varnavski, G. C. Schatz, T. P. Bigioni, T. Goodson, J. Phys. Chem. C 2017, 121, 1349.
- 36R. Ho-Wu, P. K. Sahu, N. Wu, T. Chen, C. Yu, J. Xie, T. Goodson, J. Phys. Chem. C 2018, 122, 24368.
- 37P. Maioli, T. Stoll, H. E. Sauceda, I. Valencia, A. Demessence, F. Bertorelle, A. Crut, F. Vallée, I. L. Garzón, G. Cerullo, N. Del Fatti, Nano Lett. 2018, 18, 6842–6849.
- 38N. A. Sakthivel, M. Stener, L. Sementa, A. Fortunelli, G. Ramakrishna, A. Dass, J. Phys. Chem. Lett. 2018, 9, 1295.
- 39M. Zhou, C. Yao, M. Y. Sfeir, T. Higaki, Z. Wu, R. Jin, J. Phys. Chem. C 2018, 122, 13435.
- 40K. G. Stamplecoskie, P. V. Kamat, J. Am. Chem. Soc. 2014, 136, 11093.
- 41M. A. Abbas, T.-Y. Kim, S. U. Lee, Y. S. Kang, J. H. Bang, J. Am. Chem. Soc. 2016, 138, 390.
- 42M. A. Abbas, P. V. Kamat, J. H. Bang, ACS Energy Lett. 2018, 3, 840.
- 43B. Weng, K.-Q. Lu, Z. Tang, H. M. Chen, Y.-J. Xu, Nat. Commun. 2018, 9, 1543.
- 44H. Yang, Y. Wang, X. Chen, X. Zhao, L. Gu, H. Huang, J. Yan, C. Xu, G. Li, J. Wu, A. J. Edwards, B. Dittrich, Z. Tang, D. Wang, L. Lehtovaara, H. Häkkinen, N. F. Zheng, Nat. Commun. 2016, 7, 12809.
- 45Q. Yao, T. Chen, X. Yuan, J. Xie, Acc. Chem. Res. 2018, 51, 1338.
- 46Y. Wang, H. Su, L. Ren, S. Malola, S. Lin, B. K. Teo, H. Häkkinen, N. F. Zheng, Angew. Chem. Int. Ed. 2016, 55, 15152;
Angew. Chem. 2016, 128, 15376.
10.1002/ange.201609144 Google Scholar
- 47Z. Lei, X.-K. Wan, S.-F. Yuan, Z.-J. Guan, Q.-M. Wang, Acc. Chem. Res. 2018, 51, 2465.
- 48B. K. Teo, H. Zhang, Coord. Chem. Rev. 1995, 143, 611.
- 49K. Konishi, Struct. Bonding (Berlin) 2014, 161, 49.
- 50Y. Wang, H. Su, C. Xu, G. Li, L. Gell, S. Lin, Z. Tang, H. Häkkinen, N. F. Zheng, J. Am. Chem. Soc. 2015, 137, 4324.
- 51M. Quick, F. Berndt, A. L. Dobryakov, I. N. Ioffe, A. A. Granovsky, C. Knie, R. Mahrwald, D. Lenoir, N. P. Ernsting, S. A. Kovalenko, J. Phys. Chem. B 2014, 118, 1389.
- 52D. Crasto, A. Dass, J. Phys. Chem. C 2013, 117, 22094.
- 53S. P. Pujari, L. Scheres, A. T. M. Marcelis, H. Zuilhof, Angew. Chem. Int. Ed. 2014, 53, 6322;
Angew. Chem. 2014, 126, 6438.
10.1002/ange.201306709 Google Scholar
- 54S. P. Pujari, Y. Li, R. Regeling, H. Zuilhof, Langmuir 2013, 29, 10405.
- 55Y. Dai, S. J. Liu, N. F. Zheng, J. Am. Chem. Soc. 2014, 136, 5583.
- 56Y. Fang, Y. Xu, X. Li, Y. Ma, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 9749; Angew. Chem. 2018, 130, 9897.
- 57A. Razzaq, C. A. Grimes, S.-I. In, Carbon 2016, 98, 537.
- 58C. Ampelli, F. Tavella, S. Perathoner, G. Centi, Chem. Eng. J. 2017, 320, 352.
- 59N. F. Zheng, G. D. Stucky, J. Am. Chem. Soc. 2006, 128, 14278.
- 60H. Wang, F. Chen, W. Li, T. Tian, J. Power Sources 2015, 287, 150.
- 61P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, Adv. Drug Delivery Rev. 2008, 60, 1307.
- 62S. R. Deka, A. Quarta, R. Di Corato, A. Falqui, L. Manna, R. Cingolani, T. Pellegrino, Langmuir 2010, 26, 10315.
- 63J.-Z. Du, T.-M. Sun, W.-J. Song, J. Wu, J. Wang, Angew. Chem. Int. Ed. 2010, 49, 3621–3626; Angew. Chem. 2010, 122, 3703–3708.
- 64F.-X. Xiao, S.-F. Hung, J. Miao, H.-Y. Wang, H. Yang, B. Liu, Small 2015, 11, 554–567.
- 65X. Wang, A. S. Varela, A. Bergmann, S. Kühl, P. Strasser, ChemSusChem 2017, 10, 4642.
- 66A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595.
- 67W. Hong, H. Li, S.-X. Liu, Y. Fu, J. Li, V. Kaliginedi, S. Decurtins, T. Wandlowski, J. Am. Chem. Soc. 2012, 134, 19425.
- 68P. Maity, S. Takano, S. Yamazoe, T. Wakabayashi, T. Tsukuda, J. Am. Chem. Soc. 2013, 135, 9450.