Highly Enantio- and Diastereoselective Catalytic Asymmetric Tamura Cycloaddition Reactions
Aarón Gutiérrez Collar
School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2 Ireland
Search for more papers by this authorDr. Cristina Trujillo
School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2 Ireland
Search for more papers by this authorCorresponding Author
Prof. Stephen J. Connon
School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2 Ireland
Search for more papers by this authorAarón Gutiérrez Collar
School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2 Ireland
Search for more papers by this authorDr. Cristina Trujillo
School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2 Ireland
Search for more papers by this authorCorresponding Author
Prof. Stephen J. Connon
School of Chemistry Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2 Ireland
Search for more papers by this authorGraphical Abstract
Tetralone and easy target: A highly enantio- and diastereoselective Tamura cycloaddition process involving simple α,β-unsaturated imines to yield malleable α-tetralones is reported. In addition, DFT calculations provided insight into the catalyst mode of action and the origins of the observed enantiocontrol.
Abstract
The first broad-scope catalytic asymmetric Tamura cycloaddition reactions are reported. Under the influence of anion-binding bifunctional catalysis a wide range of α,β-unsaturated N-trityl imines undergo reactions with enolisable anhydrides to form highly synthetically useful α-tetralone structures with excellent enantio- and -diastereocontrol. In stark contrast to the previous literature benchmarks, doubly activated or highly electron deficient alkenes are not required. A facile two-step, high yielding sequence can convert the cycloadducts to α-haloketones (challenging to generate catalytically by other means) with the net formation of two new C−C bonds and three new contiguous stereocentres with exquisite stereocontrol. A DFT study has provided insight into the catalyst mode of action and the origins of the observed enantiocontrol.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201900119-sup-0001-misc_information.pdf6.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Tamura, A. Wada, M. Sasho, Y. Kita, Tetrahedron Lett. 1981, 22, 4283.
- 2For an excellent review, see: M. González-López, J. T. Shaw, Chem. Rev. 2009, 109, 164.
- 3
- 3aY. Tamura, A. Wada, M. Sasho, K. Fukunaga, H. Maeda, Y. Kita, J. Org. Chem. 1982, 47, 4376;
- 3bY. Tamura, M. Sasho, K. Nakagawa, T. Tsugoshi, Y. Kita, J. Org. Chem. 1984, 49, 473;
- 3cY. Tamura, M. Sasho, S. Akai, A. Wada, Y. Kita, Tetrahedron 1984, 40, 4539;
- 3dY. Tamura, M. Sasho, H. Ohe, S. Akai, Y. Kita, Tetrahedron Lett. 1985, 26, 1549;
- 3eY. Tamura, F. Fukata, M. Sasho, T. Tsugoshi, Y. Kita, J. Org. Chem. 1985, 50, 2273;
- 3fY. Kita, S.-I. Mohri, T. Tsugoshi, H. Maeda, Y. Tamura, Chem. Pharm. Bull. 1985, 33, 4723.
- 4
- 4aC. D. Cox, T. Siu, S. J. Danishefsky, Angew. Chem. Int. Ed. 2003, 42, 5625;
- 4bT. Siu, C. D. Cox, S. J. Danishefsky, Angew. Chem. Int. Ed. 2003, 42, 5629;
- 5
- 5aM. D. Shair, T. Y. Yoon, S. J. Danishefsky, Angew. Chem. Int. Ed. Engl. 1995, 34, 1721;
- 5bM. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou, S. J. Danishefsky, J. Am. Chem. Soc. 1996, 118, 9509;
- 5cS. J. Danishefsky, M. D. Shair, J. Org. Chem. 1996, 61, 16.
- 6F. Manoni, S. J. Connon, Angew. Chem. Int. Ed. 2014, 53, 2628;
- 7
- 7aF. Manoni, U. Farid, C. Trujillo, S. J. Connon, Org. Biomol. Chem. 2017, 15, 1463;
- 7bU. Nath, S. C. Pan, J. Org. Chem. 2017, 82, 3262;
- 7cH. Xu, F. Sha, Q. Li, X. Y. Wu, Org. Biomol. Chem. 2018, 16, 7214–7222.
- 8
- 8aJ. A. Findlay, D. Kwan, Can. J. Chem. 1973, 51, 3299;
- 8bT. Morita, H. Aoki, Agric. Biol. Chem. 1974, 50, 997;
- 8cL. H. Mejorado, T. R. R. Pettus, J. Am. Chem. Soc. 2006, 128, 15625;
- 8dY. Fujimoto, M. Satoh, Chem. Pharm. Bull. 1986, 34, 4540;
- 8eG. Stork, J. J. La Clair, P. Spargo, R. P. Nargund, N. Totah, J. Am. Chem. Soc. 1996, 118, 5304;
- 8fL. Liu, W. Li, K. Koike, S. Zhang, T. Nikaido, Chem. Pharm. Bull. 2004, 52, 566;
- 8gK.-W. Wang, J.-S. Mao, Y.-P. Tai, Y.-J. Pan, Bioorg. Med. Chem. Lett. 2006, 16, 2274;
- 8hL. Petit, S. Z. Zard, Chem. Commun. 2010, 46, 5148;
- 8iQ. Liu, P. Zhao, X.-C. Li, M. R. Jacob, C.-R. Yang, Y.-J. Zhang, Helv. Chim. Acta 2010, 93, 265;
- 8jA. Cimmino, A. M. Villages-Fernández, A. Andolfi, D. Melck, D. Rubiales, A. Evidente, J. Agric. Food Chem. 2011, 59, 9201;
- 8kA. Evidente, R. Rodeva, A. Andolfi, Z. Stoyanova, C. Perrone, A. Motta, Eur. J. Plant Pathol. 2011, 130, 173;
- 8lK. P. Devkota, D. Covell, T. Ransom, J. B. McMahon, J. A. Beutler, J. Nat. Prod. 2013, 76, 710;
- 8mW. Ai, X. Lin, Z. Wang, X. Lu, F. Mangaladoss, X. Yang, X. Zhou, Z. Tu, Y. Liu, J. Antibiot. 2015, 68, 213.
- 9C. L. Jarvis, J. S. Hirschi, M. J. Vetticatt, D. Seidel, Angew. Chem. Int. Ed. 2017, 56, 2670;
- 10Representative recent reviews on anion-binding catalysis:
- 10aJ. Lacour, D. Moraleda, Chem. Commun. 2009, 7073;
- 10bZ. Zhang, P. R. Schreiner, Chem. Soc. Rev. 2009, 38, 1187;
- 10cS. Beckendorf, S. Asmus, O. G. Mancheňo, ChemCatChem 2012, 4, 926;
- 10dR. J. Phipps, G. L. Hamilton, F. D. Toste, Nat. Chem. 2012, 4, 603;
- 10eJ.-F. Brière, S. Oudeyer, V. Dalla, V. Levacher, Chem. Soc. Rev. 2012, 41, 1696;
- 10fM. Mahlau, B. List, Angew. Chem. Int. Ed. 2013, 52, 518;
- 10gK. Brak, E. N. Jacobsen, Angew. Chem. Int. Ed. 2013, 52, 534;
- 10hD. Seidel, Synlett 2014, 783;
- 10iN. H. Evans, P. D. Beer, Angew. Chem. Int. Ed. 2014, 53, 11716;
- 10jN. Busschaert, C. Caltagirone, W. Van Rossom, P. A. Gale, Chem. Rev. 2015, 115, 8038.
- 11
- 11aA. Georgieva, E. Stanoeva, S. Spassov, M. Haimova, N. De Kimpe, M. Boelens, M. Keppens, A. Kemme, A. Mishnev, Tetrahedron 1995, 51, 6099;
- 11bA. Georgieva, S. Spassov, E. Stanoeva, I. Topalova, C. Tchanev, J. Chem. Res. S 1997, 148.
- 12When Seidel et al. (Ref. [9]) utilised an α,β-unsaturated analogue of 6, alongside lactam formation (39 %) they observed a competing Tamura process (32 %) which furnished racemic product.
- 13For catalytic asymmetric reactions between enolisable anhydrides and aldehydes, ketones and imines see:
- 13aC. Cornaggia, F. Manoni, E. Torrente, S. Tallon, S. J. Connon, Org. Lett. 2012, 14, 1850;
- 13bF. Manoni, C. Cornaggia, J. Murray, S. Tallon, S. J. Connon, Chem. Commun. 2012, 48, 6502;
- 13cC. Cornaggia, S. Gundala, F. Manoni, N. Gopalasetty, S. J. Connon, Org. Biomol. Chem. 2016, 14, 3040;
- 13dS. A. Cronin, A. G. Collar, S. Gundala, C. Cornaggia, E. Torrente, F. Manoni, A. Botte, B. Twamley, S. J. Connon, Org. Biomol. Chem. 2016, 14, 6955;
- 13eC. Trujillo, I. Rozas, A. Botte, S. J. Connon, Chem. Commun. 2017, 53, 8874;
- 13fR. Claveau, B. Twamley, S. J. Connon, Chem. Commun. 2018, 54, 3231.
- 14For a recent review regarding the synthesis of tetralones by catalytic asymmetric dearomatisation, see: W.-T. Wu, L. Zhang, S.-L. You, Chem. Soc. Rev. 2016, 45, 1570.
- 15Representative reviews:
- 15aJ. V. Greenhill, Chem. Soc. Rev. 1977, 6, 277;
- 15bJ. P. Michael, C. B. de Koning, D. Gravestock, G. D. Hosken, A. S. Howard, C. M. Jungmann, R. W. M. Krause, A. S. Parsons, S. C. Pelly, T. V. Stanbury, Pure Appl. Chem. 1999, 71, 979;
- 15cS. Joseph, D. L. Comins, Curr. Opin. Drug. Discovery Dev. 2002, 5, 870;
- 15dB. Stanovnik, J. Svete, Chem. Rev. 2004, 104, 2433;
- 15eD. V. Dar′in, P. S. Lobanov, Russ. Chem. Rev. 2015, 84, 601.
- 16Use of N-substituents smaller than tert-butyl led to unselective cycloaddition and mixtures of tetralone and lactam products.
- 17Y. Sohtome, A. Tanatani, Y. Hashimoto, K. Nagasawa, Tetrahedron Lett. 2004, 45, 5589.
- 18
- 18aC. K. De, E. G. Klauber, D. Seidel, J. Am. Chem. Soc. 2009, 131, 17060;
- 18bN. Mittal, K. M. Lippert, C. K. De, E. G. Klauber, T. J. Emge, P. R. Schreiner, D. Seidel, J. Am. Chem. Soc. 2015, 137, 5748.
- 19The catalytic asymmetric chlorination of unactivated ketones is a considerable challenge. Note: only Ref. [19b] details the use of unsymmetrical ketones:
- 19aM. Marigo, S. Bachmann, N. Halland, A. Braunton, K. A. Jørgensen, Angew. Chem. Int. Ed. 2004, 43, 5507;
- 19bK. Shibatomi, K. Kitahara, N. Sazaki, Y. Kawasaki, I. Fujisawa, S. Iwasa, Nat. Commun. 2017, 8, 15600.
- 20For the seminal mechanistic work proposing iminium ion–enolate ion pairs following proton transfer, see: O. Pattawong, D. Q. Tan, J. C. Fettinger, J. T. Shaw, P. H.-Y. Cheong, Org. Lett. 2013, 15, 5130.