Low-Valent Group 14 NHC-Stabilized Phosphinidenide ate Complexes and NHC-Stabilized K/P-Clusters
Markus Balmer
Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg, 35032 Marburg, Germany
Search for more papers by this authorDr. Florian Weigend
Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Leopoldshafen-Eggenstein, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Carsten von Hänisch
Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg, 35032 Marburg, Germany
Search for more papers by this authorMarkus Balmer
Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg, 35032 Marburg, Germany
Search for more papers by this authorDr. Florian Weigend
Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Leopoldshafen-Eggenstein, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Carsten von Hänisch
Fachbereich Chemie and Wissenschaftliches Zentrum für, Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg, 35032 Marburg, Germany
Search for more papers by this authorGraphical Abstract
Carbene-phosphinidenide complexes: New potassium-containing molecular or ionic compounds were obtained starting from the phosphinidenide SIMesPK [SIMes: 1,3-bis-(2,4,6-trimethylphenyl)-imidazolidine-2-ylidene]. For example, recrystallisation of SIMesPK with KOtBu yields the barrel-like cage compound [K6(SIMesP)2(OtBu)4].
Abstract
The N-heterocyclic carbene (NHC)-stabilized phosphinidenide, SIMesPK [SIMes=1,3-bis(2,4,6-trimethylphenyl)imidazolidine-2-ylidene], was used as an (NHC)P-transfer reagent for the synthesis of the low-valent Group 14 ate complexes K[(SIMesP)3E] (E=Ge: 2, Sn: 3, Pb: 4), which were characterized by 1H NMR, 31P NMR, IR spectroscopy as well as elemental and X-ray analysis. Furthermore, SIMesPK was used in reactions with potassium amides and alkoxides to form the molecular phosphorus–potassium clusters [K4(SIMesP)2(hmds)2] [5, hmds=N(SiMe3)2] and [K6(SIMesP)2(OtBu)4] (6). Finally, the reaction of SIMesPK with Li[Al(OC4F9)4] led to the potassium-rich ionic compound [(SIMesP)4K5][Al(OC4F9)4] (7).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201900348-sup-0001-misc_information.pdf1.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gilliard, P. Wei, H. F. Schaefer, P. V. R. Schleyer, G. H. Robinson, Organometallics 2010, 29, 4778–4780.
- 2L. Dostál, Coord. Chem. Rev. 2017, 353, 142–158.
- 3K. Schwedtmann, G. Zanoni, J. J. Weigand, Chem. Asian J. 2018, 13, 1388–1405.
- 4V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678–9842.
- 5S. Kundu, S. Sinhababu, A. V. Luebben, T. Mondal, D. Koley, B. Dittrich, H. W. Roesky, J. Am. Chem. Soc. 2018, 140, 151–154.
- 6S. Kundu, S. Sinhababu, M. M. Siddiqui, A. V. Luebben, B. Dittrich, T. Yang, G. Frenking, H. W. Roesky, J. Am. Chem. Soc. 2018, 140, 9409–9412.
- 7A. Doddi, D. Bockfeld, T. Bannenberg, P. G. Jones, M. Tamm, Angew. Chem. Int. Ed. 2014, 53, 13568–13572;
Angew. Chem. 2014, 126, 13786–13790.
10.1002/ange.201408354 Google Scholar
- 8D. Bockfeld, A. Doddi, P. G. Jones, M. Tamm, Eur. J. Inorg. Chem. 2016, 3704–3713.
- 9M. Peters, A. Doddi, T. Bannenberg, M. Freytag, P. G. Jones, M. Tamm, Inorg. Chem. 2017, 56, 10785–10793.
- 10A. Beil, R. J. Gilliard, H. Grützmacher, Dalton Trans. 2016, 45, 2044–2052.
- 11A. M. Tondreau, Z. Benkö, J. R. Harmer, H. Grützmacher, Chem. Sci. 2014, 5, 1545–1554.
- 12M. Cicač-Hudi, J. Bender, S. H. Schlindwein, M. Bispinghoff, M. Nieger, H. Grützmacher, D. Gudat, Eur. J. Inorg. Chem. 2016, 649–658.
- 13O. Lemp, M. Balmer, K. Reiter, F. Weigend, C. von Hänisch, Chem. Commun. 2017, 53, 7620–7623.
- 14M. Balmer, C. von Hänisch, Z. Anorg. Allg. Chem. 2018, 644, 1143–1148.
- 15M. Balmer, H. Gottschling, C. von Hänisch, Chem. Commun. 2018, 54, 2659–2661.
- 16L. Liu, D. A. Ruiz, D. Munz, G. Bertrand, Chem 2016, 1, 147–153.
- 17L. Liu, D. A. Ruiz, F. Dahcheh, G. Bertrand, Chem. Commun. 2015, 51, 12732–12735.
- 18Z. Li, X. Chen, Y. Li, C. Su, H. Grützmacher, Chem. Commun. 2016, 52, 11343–11346.
- 19A. J. Arduengo, J. C. Calabrese, A. H. Cowley, H. V. R. Dias, J. R. Goerlich, W. J. Marshall, B. Riegel, Inorg. Chem. 1997, 36, 2151–2158.
- 20P. A. Rupar, V. N. Staroverov, P. J. Ragogna, K. M. Baines, J. Am. Chem. Soc. 2007, 129, 15138–15139.
- 21C. Jones, A. Sidiropoulos, N. Holzmann, G. Frenking, A. Stasch, Chem. Commun. 2012, 48, 9855–9857.
- 22B. Bantu, G. M. Pawar, U. Decker, K. Wurst, A. M. Schmidt, M. R. Buchmeiser, Chem. Eur. J. 2009, 15, 3103–3109.
- 23K. Izod, J. Stewart, E. R. Clark, W. Clegg, R. W. Harrington, Inorg. Chem. 2010, 49, 4698–4707.
- 24K. Izod, W. McFarlane, B. Allen, W. Clegg, R. W. Harrington, Organometallics 2005, 24, 2157–2167.
- 25A. M. Arif, A. H. Cowley, R. A. Jones, J. M. Power, J. Chem. Soc. Chem. Commun. 1986, 1446–1447.
- 26S. Traut, C. von Hänisch, Z. Anorg. Allg. Chem. 2011, 637, 1777–1783.
- 27S. Traut, C. von Hänisch, Chem. Commun. 2010, 46, 1538–1540.
- 28A. H. Cowley, D. M. Giolando, R. A. Jones, C. M. Nunn, J. M. Power, Polyhedron 1988, 7, 1909–1910.
- 29G. W. Rabe, S. Kheradmandan, G. P. A. Yap, Inorg. Chem. 1998, 37, 6541–6543.
- 30R. Wolf, E. Hey-Hawkins, Z. Anorg. Allg. Chem. 2006, 632, 727–734.
- 31M. S. Winston, J. E. Bercaw, Organometallics 2010, 29, 6408–6416.
- 32E. Hey, P. B. Hitchcock, M. F. Lappert, A. K. Rai, J. Organomet. Chem. 1987, 325, 1–12.
- 33M. Driess, U. Hoffmanns, S. Martin, K. Merz, H. Pritzkow, Angew. Chem. Int. Ed. 1999, 38, 2733–2736;
10.1002/(SICI)1521-3773(19990917)38:18<2733::AID-ANIE2733>3.0.CO;2-S CASPubMedWeb of Science®Google ScholarAngew. Chem. 1999, 111, 2906–2909.
- 34M. Driess, H. Pritzkow, S. Martin, S. Rell, D. Fenske, G. Baum, Angew. Chem. Int. Ed. Engl. 1996, 35, 986–988;
Angew. Chem. 1996, 108, 1064–1066.
10.1002/ange.19961080912 Google Scholar
- 35G. W. Rabe, H. Heise, G. P. A. Yap, L. M. Liable-Sands, I. A. Guzei, A. L. Rheingold, Inorg. Chem. 1998, 37, 4235–4245.
- 36R. A. Jones, A. L. Stuart, T. C. Wright, J. Am. Chem. Soc. 1983, 105, 7459–7460.
- 37G. W. Rabe, J. Riede, A. Schier, Acta Crystallogr. Sect. C 1996, 52, 1350–1352.
- 38G. W. Rabe, S. Kheradmandan, L. M. Liable-Sands, I. A. Guzei, A. L. Rheingold, Angew. Chem. Int. Ed. 1998, 37, 1404–1407;
10.1002/(SICI)1521-3773(19980605)37:10<1404::AID-ANIE1404>3.0.CO;2-V CASPubMedWeb of Science®Google ScholarAngew. Chem. 1998, 110, 1495–1497.10.1002/(SICI)1521-3757(19980518)110:10<1495::AID-ANGE1495>3.0.CO;2-H Google Scholar
- 39S. Hitzel, C. Färber, C. Bruhn, U. Siemeling, Dalton Trans. 2017, 46, 6333–6348.
- 40H.-W. Lerner, M. Wagner, M. Bolte, Chem. Commun. 2003, 2700, 990–991.
- 41M. Driess, S. Rell, H. Pritzkow, R. Janoschek, Chem. Commun. 1996, 2, 305–306.
- 42K. F. Tesh, T. P. Hanusa, J. C. Huffman, Inorg. Chem. 1990, 29, 1584–1586.
- 43M. Schlosser, Pure Appl. Chem. 1988, 60, 1627–1634.
- 44M. Schlosser, S. Strunk, Tetrahedron Lett. 1984, 25, 741–744.
- 45P. Benrath, M. Kaiser, T. Limbach, M. Mondeshki, J. Klett, Angew. Chem. Int. Ed. 2016, 55, 10886–10889;
Angew. Chem. 2016, 128, 11045–11049.
10.1002/ange.201602792 Google Scholar
- 46I. Sänger, J. Breunig, F. Schödel, M. Bolte, H.-W. Lerner, Z. Naturforsch. B 2016, 71, 135–139.
10.1515/znb-2015-0156 Google Scholar
- 47F. García, R. J. Less, M. McPartlin, A. Michalski, R. E. Mulvey, V. Naseri, M. L. Stead, A. Morán De Vega, D. S. Wright, Chem. Commun. 2011, 47, 1821–1823.
- 48A. Hübner, T. Bernert, I. Sänger, E. Alig, M. Bolte, L. Fink, M. Wagner, H.-W. Lerner, Dalton Trans. 2010, 39, 7528–7533.
- 49M. Driess, G. Huttner, N. Knopf, H. Pritzkow, L. Zsolnai, Angew. Chem. Int. Ed. Engl. 1995, 34, 316–318;
Angew. Chem. 1995, 107, 354–356.
10.1002/ange.19951070317 Google Scholar
- 50M. Driess, S. Kuntz, C. Monsé, K. Merz, Chem. Eur. J. 2000, 6, 4343–4347.
10.1002/1521-3765(20001201)6:23<4343::AID-CHEM4343>3.0.CO;2-R CASPubMedWeb of Science®Google Scholar
- 51M. Driess, C. Monsé, K. Merz, Z. Anorg. Allg. Chem. 2001, 627, 1225–1230.
- 52J. Geier, H. Rüegger, M. Wörle, H. Grützmacher, Angew. Chem. Int. Ed. 2003, 42, 3951–3954;
Angew. Chem. 2003, 115, 4081–4085.
10.1002/ange.200250725 Google Scholar
- 53S. Tschirschwitz, P. Lönnecke, J. Reinhold, E. Hey-Hawkins, Angew. Chem. Int. Ed. 2005, 44, 2965–2969;
Angew. Chem. 2005, 117, 3025–3029.
10.1002/ange.200462543 Google Scholar
- 54S. Tschirschwitz, P. Lönnecke, E. Hey-Hawkins, Dalton Trans. 2007, 1377–1382.
- 55M. Westerhausen, S. Weinrich, G. Kramer, H. Piotrowski, Inorg. Chem. 2002, 41, 7072–7076.
- 56F. García, J. P. Hehn, R. A. Kowenicki, M. McPartlin, C. M. Pask, A. Rothenberger, M. L. Stead, D. S. Wright, Organometallics 2006, 25, 3275–3281.
- 57H.-W. Lerner, M. Bolte, K. Karaghiosoff, M. Wagner, Organometallics 2004, 23, 6073–6076.
- 58G. C. Forbes, A. R. Kennedy, R. E. Mulvey, B. A. Roberts, R. B. Rowlings, Organometallics 2002, 21, 5115–5121.
- 59M. H. Chisholm, S. R. Drake, A. A. Naiini, W. E. Streib, Polyhedron 1991, 10, 337–345.
- 60I. Krossing, I. Raabe, Angew. Chem. Int. Ed. 2004, 43, 2066–2090;
Angew. Chem. 2004, 116, 2116–2142.
10.1002/ange.200300620 Google Scholar
- 61TURBOMOLE V7.3 2018, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; Available from http://www.turbomole.com.
- 62CCDC 1878539 (2), 1878540 (3), 1878544 (4), 1878541 (5), 1878542 (6), and 1878543 (7) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.