Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes
Corresponding Author
Dr. Alejandro Méndez-Ardoy
Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Search for more papers by this authorDr. Jose J. Reina
Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Search for more papers by this authorCorresponding Author
Dr. Javier Montenegro
Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Search for more papers by this authorCorresponding Author
Dr. Alejandro Méndez-Ardoy
Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Search for more papers by this authorDr. Jose J. Reina
Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Search for more papers by this authorCorresponding Author
Dr. Javier Montenegro
Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Search for more papers by this authorGraphical Abstract
Abstract
Tracking pH with spatiotemporal resolution is a critical challenge for synthetic chemistry, chemical biology and beyond. Over the last decade, different small probes and supramolecular systems have emerged for in cellulo or in vivo pH tracking. However, pH reporting still presents critical limitations, such as background reduction, improved sensor stability, cell targeting, endosomal escape, near- and far-infrared ratiometric pH tracking and adaption to new imaging techniques (i.e., super-resolution). These challenges will require the combined efforts of synthetic and supramolecular chemistry working together to develop the next generation of smart materials that will resolve current limitations. Herein, recent advances in the synthesis of small fluorescent probes, together with new supramolecular functional systems employed for pH tracking, are described with an emphasis on ratiometric probes. The combination of organic synthesis and stimuli-responsive supramolecular functional materials will be essential to solve future challenges of pH tracking, such as improved signal to noise ratio, on target activation and microenvironment reporting.
Conflict of interest
The authors declare no conflict of interest.
References
- 1L. D. Lavis, R. T. Raines, Acs Chem. Biol. 2008, 3, 142–155.
- 2J. Rao, A. Dragulescu-Andrasi, H. Yao, Curr. Opin. Biotechnol. 2007, 18, 17–25.
- 3M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, D. C. Prasher, Science 1994, 263, 802–805.
- 4P. J. Bosch, I. R. Corrêa, M. H. Sonntag, J. Ibach, L. Brunsveld, J. S. Kanger, V. Subramaniam, Biophys. J. 2014, 107, 803–814.
- 5T. Terai, T. Nagano, Pflugers Arch. 2013, 465, 347–359.
- 6A. S. Klymchenko, Acc. Chem. Res. 2017, 50, 366–375.
- 7J. Han, K. Burgess, Chem. Rev. 2010, 110, 2709–2728.
- 8M. S. Briggs, D. D. Burns, M. E. Cooper, S. J. Gregory, Chem. Commun. 2000, 2323–2324.
- 9R. P. Haugland, The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, Life Technologies, Carlsbad, 2005.
- 10N. Marcotte, A. M. Brouwer, J. Phys. Chem. B 2005, 109, 11819–11828.
- 11A. K. Galande, R. Weissleder, C.-H. Tung, Bioconjugate Chem. 2006, 17, 255–257.
- 12N. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 2012, 41, 1130–1172.
- 13Y. Xu, Y. Liu, X. Qian, J. Photochem. Photobiol. A 2007, 190, 1–8.
- 14X.-J. Cao, L.-N. Chen, X. Zhang, J.-T. Liu, M.-Y. Chen, Q.-R. Wu, J.-Y. Miao, B.-X. Zhao, Anal. Chim. Acta 2016, 920, 86–93.
- 15A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515–1566.
- 16S. T. Manjare, Y. Kim, D. G. Churchill, Acc. Chem. Res. 2014, 47, 2985–2998.
- 17P. Bhattarai, Z. Dai, Adv. Healthcare Mater. 2017, 6, 1700262–1700223.
- 18H. A. Shindy, Dyes Pigm. 2017, 145, 505–513.
- 19M. Panigrahi, S. Dash, S. Patel, B. K. Mishra, Tetrahedron 2012, 68, 781–805.
- 20F. Würthner, S. Yao, J. Org. Chem. 2003, 68, 8943–8949.
- 21S. Kaloyanova, V. M. Trusova, G. P. Gorbenko, T. Deligeorgiev, J. Photochem. Photobiol. A 2011, 217, 147–156.
- 22D. S. Pisoni, L. Todeschini, A. C. A. Borges, C. L. Petzhold, F. S. Rodembusch, L. F. Campo, J. Org. Chem. 2014, 79, 5511–5520.
- 23O. P. Klochko, I. A. Fedyunyayeva, S. U. Khabuseva, O. M. Semenova, E. A. Terpetschnig, L. D. Patsenker, Dyes Pigm. 2010, 85, 7–15.
- 24L. M. Yagupolskii, O. L. Chernega, N. V. Kondratenko, A. N. Chernega, Y. G. Vlasenko, R. V. Nedelkov, Y. L. Yagupolskii, J. Fluorine Chem. 2010, 131, 165–171.
- 25M. E. Cooper, S. Gregory, E. Adie, S. Kalinka, J. Fluoresc. 2002, 12, 425–429.
- 26Z. Zhang, S. Achilefu, Chem. Commun. 2005, 5887.
- 27S. A. Hilderbrand, K. A. Kelly, M. Niedre, R. Weissleder, Bioconjugate Chem. 2008, 19, 1635–1639.
- 28B. Tang, X. Liu, K. Xu, H. Huang, G. Yang, L. An, Chem. Commun. 2007, 3726–3728.
- 29B. Tang, F. Yu, P. Li, L. Tong, X. Duan, T. Xie, X. Wang, J. Am. Chem. Soc. 2009, 131, 3016–3023.
- 30T. Myochin, K. Kiyose, K. Hanaoka, H. Kojima, T. Terai, T. Nagano, J. Am. Chem. Soc. 2011, 133, 3401–3409.
- 31S. Chen, J. Liu, Y. Liu, H. Su, Y. Hong, C. K. W. Jim, R. T. K. Kwok, N. Zhao, W. Qin, J. W. Y. Lam, K. S. Wong, B. Z. Tang, Chem. Sci. 2012, 3, 1804–1809.
- 32L. Fan, Y.-J. Fu, Q.-L. Liu, D.-T. Lu, C. Dong, S.-M. Shuang, Chem. Commun. 2012, 48, 11202–11204.
- 33J. Wang, S. Xia, J. Bi, M. Fang, W. Mazi, Y. Zhang, N. Conner, F.-T. Luo, H. P. Lu, H. Liu, Bioconjugate Chem. 2018, 29, 1406–1418.
- 34Y. Li, Y. Wang, S. Yang, Y. Zhao, L. Yuan, J. Zheng, R. Yang, Anal. Chem. 2015, 87, 2495–2503.
- 35X. Zhu, L. Yuan, X. Hu, L. Zhang, Y. Liang, S. He, X.-B. Zhang, W. Tan, Sensor Actuators B 2018, 259, 219–225.
- 36D. Xu, Y. Li, C.-Y. Poon, H.-N. Chan, H.-W. Li, M. S. Wong, Anal. Chem. 2018, 90, 8800–8806.
- 37S. Xia, J. Wang, J. Bi, X. Wang, M. Fang, T. Phillips, A. May, N. Conner, M. Tanasova, F.-T. Luo, H. Luo, Sensor Actuator B 2018, 265, 699–708.
- 38D. Dahal, L. McDonald, X. Bi, C. Abeywickrama, F. Gombedza, M. Konopka, S. Paruchuri, Y. Pang, Chem. Commun. 2017, 53, 3697–3700.
- 39Z. Li, E. Mintzer, R. Bittman, J. Org. Chem. 2006, 71, 1718–1721.
- 40V. P. Yakubovskyi, M. P. Shandura, Y. P. Kovtun, Eur. J. Org. Chem. 2009, 3237–3243.
- 41L. Wu, K. Burgess, Chem. Commun. 2008, 4933–4935.
- 42R. W. Wagner, J. S. Lindsey, Pure Appl. Chem. 1996, 68, 1373–1380.
- 43M. Shah, K. Thangaraj, M. L. L. Soong, L. T. Wolford, J. H. Boyer, Heteroat. Chem. 1990, 1, 389–399.
- 44T. Werner, C. Huber, S. Heinl, M. Kollmannsberger, J. Daub, O. S. Wolfbeis, Fresenius J. Anal. Chem. 1997, 359, 150–154.
- 45M. Baruah, W. Qin, N. Basarić, W. M. De Borggraeve, N. Boens, J. Org. Chem. 2005, 70, 4152–4157.
- 46Y. Urano, D. Asanuma, Y. Hama, Y. Koyama, T. Barrett, M. Kamiya, T. Nagano, T. Watanabe, A. Hasegawa, P. L. Choyke, H. Kobayashi, Nat. Med. 2009, 15, 104–109.
- 47M. Zhu, P. Xing, Y. Zhou, L. Gong, J. Zhang, D. Qi, Y. Bian, H. Du, J. Jiang, J. Mater. Chem. B 2018, 6, 4422–4426.
- 48H. Xiong, P. Kos, Y. Yan, K. Zhou, J. B. Miller, S. Elkassih, D. J. Siegwart, Bioconjugate Chem. 2016, 27, 1737–1744.
- 49M. Grossi, M. Morgunova, S. Cheung, D. Scholz, E. Conroy, M. Terrile, A. Panarella, J. C. Simpson, W. M. Gallagher, D. F. O'Shea, Nat. Commun. 2016, 7, 10855.
- 50A. Sutter, M. Elhabiri, G. Ulrich, Chem. Eur. J. 2018, 24, 11119–11130.
- 51W.-C. Sun, K. R. Gee, D. H. Klaubert, R. P. Haugland, J. Org. Chem. 1997, 62, 6469–6475.
- 52J. Shi, X. Zhang, D. C. Neckers, J. Org. Chem. 1992, 57, 4418–4421.
- 53V. P. Boyarskiy, V. N. Belov, R. Medda, B. Hein, M. Bossi, S. W. Hell, Chem. Eur. J. 2008, 14, 1784–1792.
- 54J. E. Whitaker, R. P. Haugland, D. Ryan, P. C. Hewitt, F. G. Prendergast, Anal. Biochem. 1992, 207, 267–279.
- 55C. C. Woodroofe, M. H. Lim, W. Bu, S. J. Lippard, Tetrahedron 2005, 61, 3097–3105.
- 56S. C. Burdette, S. J. Lippard, Inorg. Chem. 2002, 41, 6816–6823.
- 57A. S. Chaudhari, Y. S. Parab, V. Patil, N. Sekar, S. R. Shukla, RSC Adv. 2012, 2, 12112–12117.
- 58J. B. Grimm, L. D. Lavis, Org. Lett. 2011, 13, 6354–6357.
- 59J. E. T. Corrie, J. S. Craik, 1995, WO95/09170.
- 60Y. M. Cheng, T. Kelly, J. Church, Neuroscience 2008, 151, 1084–1098.
- 61X.-L. Wu, X.-L. Jin, Y.-X. Wang, Q.-B. Mei, J.-L. Li, Z. Shi, J. Lumin. 2011, 131, 776–780.
- 62F.-Y. Ge, X.-L. Yan, F.-Y. Yan, H.-Y. Pan, L.-G. Chen, J. Fluoresc. 2005, 15, 829–833.
- 63E. Nakata, Y. Nazumi, Y. Yukimachi, Y. Uto, H. Maezawa, T. Hashimoto, Y. Okamoto, H. Hori, Bioorg. Med. Chem. Lett. 2011, 21, 1663–1666.
- 64Z. Li, S. Wu, J. Han, S. Han, Analyst 2011, 136, 3698–3706.
- 65X. Chen, T. Pradhan, F. Wang, J. S. Kim, J. Yoon, Chem. Rev. 2012, 112, 1910–1956.
- 66E. E. Nekongo, P. Bagchi, C. J. Fahrni, V. V. Popik, Org. Biomol. Chem. 2012, 10, 9214–9218.
- 67D. Asanuma, Y. Takaoka, S. Namiki, K. Takikawa, M. Kamiya, T. Nagano, Y. Urano, K. Hirose, Angew. Chem. Int. Ed. 2014, 53, 6085–6089;
Angew. Chem. 2014, 126, 6199–6203.
10.1002/ange.201402030 Google Scholar
- 68S. Takahashi, Y. Kagami, K. Hanaoka, T. Terai, T. Komatsu, T. Ueno, M. Uchiyama, I. Koyama-Honda, N. Mizushima, T. Taguchi, H. Arai, T. Nagano, Y. Urano, J. Am. Chem. Soc. 2018, 140, 5925–5933.
- 69Z. Xue, H. Zhao, J. Liu, J. Han, S. Han, ACS Sens. 2017, 2, 436–442.
- 70X. Wan, S. Liu, J. Mater. Chem. 2011, 21, 10321–10329.
- 71S. Benson, A. Fernandez, N. D. Barth, F. de Moliner, M. H. Horrocks, C. S. Herrington, J. L. Abad, A. Delgado, L. Kelly, Z. Chang, Y. Feng, M. Nishiura, Y. Hori, K. Kikuchi, M. Vendrell, Angew. Chem. Int. Ed. 2019, 58, 6911–6915; Angew. Chem. 2019, 131, 6985–6989.
- 72Y. Wen, W. Zhang, T. Liu, F. Huo, C. Yin, Anal. Chem. 2017, 89, 11869–11874.
- 73Z. Xie, B. Yin, J. Shen, D. Hong, L. Zhu, J. Ge, Q. Zhu, Org. Biomol. Chem. 2018, 16, 4628–4632.
- 74J.-T. Hou, W. X. Ren, K. Li, J. Seo, A. Sharma, X.-Q. Yu, J. S. Kim, Chem. Soc. Rev. 2017, 46, 2076–2090.
- 75A. Fernández, M. Vendrell, Chem. Soc. Rev. 2016, 45, 1182–1196.
- 76O. Seksek, N. Henry-Toulmé, F. Sureau, J. Bolard, Anal. Biochem. 1991, 193, 49–54.
- 77K. Nienhaus, G. Ulrich Nienhaus, Chem. Soc. Rev. 2014, 43, 1088–1106.
- 78A. S. Klymchenko, R. Kreder, Chem. Biol. 2014, 21, 97–113.
- 79Y. S. Marfin, E. L. Aleksakhina, D. A. Merkushev, E. V. Rumyantsev, I. K. Tomilova, J. Fluoresc. 2016, 26, 255–261.
- 80M. Collot, P. Ashokkumar, H. Anton, E. Boutant, O. Faklaris, T. Galli, Y. Mely, L. Danglot, A. S. Klymchenko, Cell Chem. Biol. 2019, 26, 600–614.
- 81M. Tantama, Y. P. Hung, G. Yellen, J. Am. Chem. Soc. 2011, 133, 10034–10037.
- 82G. Miesenböck, D. A. De Angelis, J. E. Rothman, Nature 1998, 394, 192–195.
- 83D. H. Williams, M. Westwell, Chem. Soc. Rev. 1998, 27, 57–64.
- 84H.-S. Peng, J. A. Stolwijk, L.-N. Sun, J. Wegener, O. S. Wolfbeis, Angew. Chem. Int. Ed. 2010, 49, 4246–4249;
Angew. Chem. 2010, 122, 4342–4345.
10.1002/ange.200906926 Google Scholar
- 85Y. J. Lee, H. C. Kang, J. Hu, J. W. Nichols, Y. S. Jeon, Y. H. Bae, Biomacromolecules 2012, 13, 2945–2951.
- 86Q. Chen, X. Liu, J. Chen, J. Zeng, Z. Cheng, Z. Liu, Adv. Mater. 2015, 27, 6820–6827.
- 87M. J. Webber, R. Langer, Chem. Soc. Rev. 2017, 46, 6600–6620.
- 88C. Felip-León, S. Díaz-Oltra, F. Galindo, J. F. Miravet, Chem. Mater. 2016, 28, 7964–7972.
- 89M. Ding, J. Li, H. Tan, Q. Fu, Soft Matter 2012, 8, 5414–5428.
- 90X.-D. Wang, J. A. Stolwijk, T. Lang, M. Sperber, R. J. Meier, J. Wegener, O. S. Wolfbeis, J. Am. Chem. Soc. 2012, 134, 17011–17014.
- 91J. Hu, X. Zhang, D. Wang, X. Hu, T. Liu, G. Zhang, S. Liu, J. Mater. Chem. 2011, 21, 19030–19038.
- 92M. Zhu, D. Lu, S. Wu, Q. Lian, W. Wang, A. H. Milani, Z. Cui, N. T. Nguyen, M. Chen, L. A. Lyon, D. J. Adlam, A. J. Freemont, J. A. Hoyland, B. R. Saunders, ACS Macro Lett. 2017, 6, 1245–1250.
- 93M. V. Liberti, J. W. Locasale, Trends Biochem. Sci. 2016, 41, 211–218.
- 94R. Ohgaki, Y. Teramura, D. Hayashi, L. Quan, S. Okuda, S. Nagamori, M. Takai, Y. Kanai, Sci. Rep. 2017, 7, 17484.
- 95M. Anderson, A. Moshnikova, D. M. Engelman, Y. K. Reshetnyak, O. A. Andreev, Proc. Natl. Acad. Sci. USA 2016, 113, 8177–8181.
- 96G. Ke, Z. Zhu, W. Wang, Y. Zou, Z. Guan, S. Jia, H. Zhang, X. Wu, C. J. Yang, ACS Appl. Mater. Interfaces 2014, 6, 15329–15334.
- 97L. Ying, N. Xie, Y. Yang, X. Yang, Q. Zhou, B. Yin, J. Huang, K. Wang, Chem. Commun. 2016, 52, 7818–7821.
- 98E. K. Pramod Kumar, K. Almdal, T. L. Andresen, Chem. Commun. 2012, 48, 4776–4778.
- 99P. Kumar E. K., L. N. Feldborg, K. Almdal, T. L. Andresen, Chem. Mater. 2013, 25, 1496–1501.
- 100E. K. P. Kumar, R. V. Søndergaard, B. Windschiegl, K. Almdal, T. L. Andresen, J. Mater. Chem. B 2014, 2, 6652–6659.
- 101E. K. P. Kumar, R. I. Jølck, T. L. Andresen, Macromol. Rapid Commun. 2015, 36, 1598–1604.
- 102H. Ahn, J. Hong, S. Y. Kim, I. Choi, M. J. Park, ACS Appl. Mater. Interfaces 2015, 7, 704–712.
- 103P. Gong, Y. Yang, H. Yi, S. Fang, P. Zhang, Z. Sheng, G. Gao, D. Gao, L. Cai, Nanoscale 2014, 6, 5416–5424.
- 104S. Chang, X. Wu, Y. Li, D. Niu, Y. Gao, Z. Ma, J. Gu, W. Zhao, W. Zhu, H. Tian, J. Shi, Biomaterials 2013, 34, 10182–10190.
- 105A. Fuertes, J. Marisa, J. R. Granja, J. Montenegro, Chem. Commun. 2017, 53, 7861–7871.
- 106I. Gallego, A. Rioboo, J. J. Reina, B. Díaz, Á. Canales, F. J. Cañada, J. Guerra-Varela, L. Sanchez, J. Montenegro, ChemBioChem 2019, 20, 1400–1409.
- 107M. Juanes, I. Lostalé-Seijo, J. R. Granja, J. Montenegro, Chem. Eur. J. 2018, 24, 10689–10698.
- 108I. Lostalé-Seijo, I. Louzao, M. Juanes, J. Montenegro, Chem. Sci. 2017, 8, 7923–7931.
- 109L. Cao, X. Li, S. Wang, S. Li, Y. Li, G. Yang, Chem. Commun. 2014, 50, 8787–8790.
- 110L. He, X. Yang, F. Zhao, K. Wang, Q. Wang, J. Liu, J. Huang, W. Li, M. Yang, Anal. Chem. 2015, 87, 2459–2465.
- 111Z. Feng, Y. Ma, B. Li, L. He, Q. Wang, J. Huang, J. Liu, X. Yang, K. Wang, Anal. Methods 2019, 11, 2097–2104.
- 112P. Wang, C. Zhang, H.-W. Liu, M. Xiong, S.-Y. Yin, Y. Yang, X.-X. Hu, X. Yin, X.-B. Zhang, W. Tan, Chem. Sci. 2017, 8, 8214–8220.
- 113Q. Chen, X. Liu, J. Zeng, Z. Cheng, Z. Liu, Biomaterials 2016, 98, 23–30.
- 114M. M. C. Bastings, S. Koudstaal, R. E. Kieltyka, Y. Nakano, A. C. H. Pape, D. A. M. Feyen, F. J. van Slochteren, P. A. Doevendans, J. P. G. Sluijter, E. W. Meijer, S. A. J. Chamuleau, P. Y. W. Dankers, Adv. Healthcare Mater. 2013, 2, 70–78.
- 115Y. Zimenkov, S. N. Dublin, R. Ni, R. S. Tu, V. Breedveld, R. P. Apkarian, V. P. Conticello, J. Am. Chem. Soc. 2006, 128, 6770–6771.
- 116M. T. Fenske, W. Meyer-Zaika, H.-G. Korth, H. Vieker, A. Turchanin, C. Schmuck, J. Am. Chem. Soc. 2013, 135, 8342–8349.
- 117S. Modi, M. G. Swetha, D. Goswami, G. D. Gupta, S. Mayor, Y. Krishnan, Nat. Nanotechnol. 2009, 4, 325–330.
- 118K. Zhou, Y. Wang, X. Huang, K. Luby-Phelps, B. D. Sumer, J. Gao, Angew. Chem. Int. Ed. 2011, 50, 6109–6114;
Angew. Chem. 2011, 123, 6233–6238.
10.1002/ange.201100884 Google Scholar
- 119N. S. Lee, G. Sun, W. L. Neumann, J. N. Freskos, J. J. Shieh, R. B. Dorshow, K. L. Wooley, Adv. Mater. 2009, 21, 1344–1348.
- 120O. Lustgarten, R. Carmieli, L. Motiei, D. Margulies, Angew. Chem. Int. Ed. 2019, 58, 184–188;
Angew. Chem. 2019, 131, 190–194.
10.1002/ange.201809855 Google Scholar
- 121Z. Pode, R. Peri-Naor, J. M. Georgeson, T. Georgeson, V. Kiss, T. Unger, B. Markus, H. M. Barr, L. Motiei, D. Margulies, Nat. Nanotechnol. 2017, 12, 1161–1168.
- 122H. A. Day, P. Pavlou, Z. A. E. Waller, Bioorg. Med. Chem. 2014, 22, 4407–4418.
- 123S. Modi, C. Nizak, S. Surana, S. Halder, Y. Krishnan, Nat. Nanotechnol. 2013, 8, 459–467.
- 124S. Surana, J. M. Bhat, S. P. Koushika, Y. Krishnan, Nat. Commun. 2011, 2, 340.
- 125Y. Li, T. Zhao, C. Wang, Z. Lin, G. Huang, B. D. Sumer, J. Gao, Nat. Commun. 2016, 7, 13214.
- 126I. V. Nesterova, E. E. Nesterov, J. Am. Chem. Soc. 2014, 136, 8843–8846.
- 127A. Idili, A. Vallée-Bélisle, F. Ricci, J. Am. Chem. Soc. 2014, 136, 5836–5839.
- 128S. Halder, Y. Krishnan, Nanoscale 2015, 7, 10008–10012.
- 129N. Narayanaswamy, R. R. Nair, Y. V. Suseela, D. K. Saini, T. Govindaraju, Chem. Commun. 2016, 52, 8741–8744.
- 130W. Ma, L. Yan, X. He, T. Qing, Y. Lei, Z. Qiao, D. He, K. Huang, K. Wang, Anal. Chem. 2018, 90, 1889–1896.
- 131J. Huang, Y. He, X. Yang, K. Wang, L. Ying, K. Quan, Y. Yang, B. Yin, Chem. Commun. 2014, 50, 15768–15771.
- 132J. Huang, L. Ying, X. Yang, Y. Yang, K. Quan, H. Wang, N. Xie, M. Ou, Q. Zhou, K. Wang, Anal. Chem. 2015, 87, 8724–8731.
- 133M. Yang, X. Zhang, H. Liu, H. Kang, Z. Zhu, W. Yang, W. Tan, Anal. Chem. 2015, 87, 5854–5859.
- 134B. Fu, J. Huang, D. Bai, Y. Xie, Y. Wang, S. Wang, X. Zhou, Chem. Commun. 2015, 51, 16960–16963.
- 135H. N. Joo, T. Van Thi Nguyen, H. K. Chae, Y. J. Seo, Bioorg. Med. Chem. Lett. 2017, 27, 2415–2419.
- 136Y. Diaz-Fernandez, F. Foti, C. Mangano, P. Pallavicini, S. Patroni, A. Perez-Gramatges, S. Rodriguez-Calvo, Chem. Eur. J. 2006, 12, 921–930.
- 137L. Fu, P. Yuan, Z. Ruan, L. Liu, T. Li, L. Yan, Polym. Chem. 2017, 8, 1028–1038.
- 138J. Hu, G. Liu, C. Wang, T. Liu, G. Zhang, S. Liu, Biomacromolecules 2014, 15, 4293–4301.
- 139G. Sun, H. Cui, L. Y. Lin, N. S. Lee, C. Yang, W. L. Neumann, J. N. Freskos, J. J. Shieh, R. B. Dorshow, K. L. Wooley, J. Am. Chem. Soc. 2011, 133, 8534–8543.
- 140C. A. Hunter, H. L. Anderson, Angew. Chem. Int. Ed. 2009, 48, 7488–7499;
Angew. Chem. 2009, 121, 7624–7636.
10.1002/ange.200902490 Google Scholar
- 141C. Wang, T. Zhao, Y. Li, G. Huang, M. A. White, J. Gao, Adv. Drug Delivery Rev. 2017, 113, 87–96.
- 142Y. Wang, K. Zhou, G. Huang, C. Hensley, X. Huang, X. Ma, T. Zhao, B. D. Sumer, R. J. DeBerardinis, J. Gao, Nat. Mater. 2014, 13, 204–212.
- 143C. Wang, Y. Wang, Y. Li, B. Bodemann, T. Zhao, X. Ma, G. Huang, Z. Hu, R. J. DeBerardinis, M. A. White, M. A. White, J. Gao, Nat. Commun. 2015, 6, 8524.
- 144T. Zhao, G. Huang, Y. Li, S. Yang, S. Ramezani, Z. Lin, Y. Wang, X. Ma, Z. Zeng, M. Luo, E. de Boer, X.-J. Xie, J. Thibodeaux, R. A. Brekken, X. Sun, B. D. Sumer, J. Gao, Nat. Biomed. Eng. 2016, 1, 0006.
- 145Y. Wang, C. Wang, Y. Li, G. Huang, T. Zhao, X. Ma, Z. Wang, B. D. Sumer, M. A. White, J. Gao, Adv. Mater. 2017, 29, 1603794.
- 146Y. Huang, J. Xing, Q. Gong, L.-C. Chen, G. Liu, C. Yao, Z. Wang, H.-L. Zhang, Z. Chen, Q. Zhang, Nat. Commun. 2019, 10, 169–9.
- 147P. J. Pacheco-Liñán, M. Moral, M. L. Nueda, R. Cruz-Sánchez, J. Fernández-Sainz, A. Garzón-Ruiz, I. Bravo, M. Melguizo, J. Laborda, J. Albaladejo, J. Phys. Chem. C 2017, 121, 24786–24797.
- 148E. Nakata, Y. Yukimachi, Y. Nazumi, Y. Uto, H. Maezawa, T. Hashimoto, Y. Okamoto, H. Hori, Chem. Commun. 2010, 46, 3526–3528.
- 149E. Nakata, Y. Yukimachi, Y. Nazumi, M. Uwate, H. Maseda, Y. Uto, T. Hashimoto, Y. Okamoto, H. Hori, T. Morii, RSC Adv. 2014, 4, 348–357.
- 150T. Jing, L. Yan, Talanta 2017, 170, 185–192.
- 151Y. Liu, Z. Qu, H. Cao, H. Sun, Y. Gao, X. Jiang, ACS Nano 2017, 11, 12446–12452.
- 152E. S. Cho, S. W. Hong, W. H. Jo, Macromol. Rapid Commun. 2008, 29, 1798–1803.
- 153J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740–1741.
- 154H. Lu, B. Xu, Y. Dong, F. Chen, Y. Li, Z. Li, J. He, H. Li, W. Tian, Langmuir 2010, 26, 6838–6844.
- 155J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940.
- 156S. Chen, Y. Hong, Y. Liu, J. Liu, C. W. T. Leung, M. Li, R. T. K. Kwok, E. Zhao, J. W. Y. Lam, Y. Yu, B. Z. Tang, J. Am. Chem. Soc. 2013, 135, 4926–4929.
- 157G. Feng, R. T. K. Kwok, B. Z. Tang, B. Liu, Appl. Phys. Rev. 2017, 4, 021307.
- 158L. Shi, Y. Liu, Q. Wang, T. Wang, Y. Ding, Y. Cao, Z. Li, H. Wei, Analyst 2018, 143, 741–746.
- 159Q. Qi, Y. Li, X. Yan, F. Zhang, S. Jiang, J. Su, B. Xu, X. Fu, L. Sun, W. Tian, Polym. Chem. 2016, 7, 5273–5280.
- 160P. Song, X. Chen, Y. Xiang, L. Huang, Z. Zhou, R. Wei, A. Tong, J. Mater. Chem. 2011, 21, 13470–13475.
- 161Q. Feng, Y. Li, L. Wang, C. Li, J. Wang, Y. Liu, K. Li, H. Hou, Chem. Commun. 2016, 52, 3123–3126.
- 162M. Shellaiah, T. Simon, V. Srinivasadesikan, C.-M. Lin, K. W. Sun, F.-H. Ko, M.-C. Lin, H.-C. Lin, J. Mater. Chem. C 2016, 4, 2056–2071.
- 163X. Ma, J. Cheng, J. Liu, X. Zhou, H. Xiang, New J. Chem. 2015, 39, 492–500.
- 164X. Zhang, S. Rehm, M. M. Safont-Sempere, F. Würthner, Nat. Chem. 2009, 1, 623–629.
- 165Z. Duan, Y.-J. Gao, Z.-Y. Qiao, S. Qiao, Y. Wang, C. Hou, L. Wang, H. Wang, Nanotechnology 2015, 26, 1–11.
- 166Z. Yang, W. Qin, J. W. Y. Lam, S. Chen, H. H. Y. Sung, I. D. Williams, B. Z. Tang, Chem. Sci. 2013, 4, 3725–3730.
- 167Z. Zhou, F. Gu, L. Peng, Y. Hu, Q. Wang, Chem. Commun. 2015, 51, 12060–12063.
- 168Y. Bao, H. De Keersmaecker, S. Corneillie, F. Yu, H. Mizuno, G. Zhang, J. Hofkens, B. Mendrek, A. Kowalczuk, M. Smet, Chem. Mater. 2015, 27, 3450–3455.
- 169Y. Zhang, Q. Xie, J. B. Robertson, C. H. Johnson, PLoS ONE 2012, 7, e43072-11.
- 170S. Burgstaller, H. Bischof, T. Gensch, S. Stryeck, B. Gottschalk, J. Ramadani-Muja, E. Eroglu, R. Rost, S. Balfanz, A. Baumann, M. Waldeck-Weiermair, J. C. Hay, T. Madl, W. F. Graier, R. Malli, ACS Sens. 2019, 4, 883–891.
- 171P. Anees, K. V. Sudheesh, P. Jayamurthy, A. R. Chandrika, R. V. Omkumar, A. Ajayaghosh, Chem. Sci. 2016, 7, 6808–6814.
- 172H. Yu, C. Chen, X. Cao, Y. Liu, S. Zhou, P. Wang, Anal. Bioanal. Chem. 2017, 409, 5073–5080.