Conversion from Heterometallic to Homometallic Metal–Organic Frameworks
Dr. Jeong Hwa Song
Department of Chemistry, Sejong University, Seoul, 05006 Korea
These authors contributed equally to this work.
Search for more papers by this authorGiseong Lee
Department of Chemistry, Korea University, Seoul, 02841 Korea
These authors contributed equally to this work.
Search for more papers by this authorJung Heum Yoon
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorJunyeon Jang
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorDoosan Choi
Department of Chemistry, Korea University, Seoul, 02841 Korea
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorHeejun Yun
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorKangin Kwon
Department of Chemistry, Korea University, Seoul, 02841 Korea
Search for more papers by this authorHojin Kim
Department of Chemistry, Korea University, Seoul, 02841 Korea
Search for more papers by this authorProf. Dr. Chang Seop Hong
Department of Chemistry, Korea University, Seoul, 02841 Korea
Search for more papers by this authorYoungki Kim
Korea Testing & Research Institute, Gwacheon, 13810 Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Hogyu Han
Department of Chemistry, Korea University, Seoul, 02841 Korea
Search for more papers by this authorCorresponding Author
Dr. Kwang Soo Lim
Korea Testing & Research Institute, Gwacheon, 13810 Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Woo Ram Lee
School of Future Convergence, Department of Chemistry and Institute of, Applied Chemistry, Hallym University, Chuncheon, 24252 Korea
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorDr. Jeong Hwa Song
Department of Chemistry, Sejong University, Seoul, 05006 Korea
These authors contributed equally to this work.
Search for more papers by this authorGiseong Lee
Department of Chemistry, Korea University, Seoul, 02841 Korea
These authors contributed equally to this work.
Search for more papers by this authorJung Heum Yoon
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorJunyeon Jang
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorDoosan Choi
Department of Chemistry, Korea University, Seoul, 02841 Korea
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorHeejun Yun
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorKangin Kwon
Department of Chemistry, Korea University, Seoul, 02841 Korea
Search for more papers by this authorHojin Kim
Department of Chemistry, Korea University, Seoul, 02841 Korea
Search for more papers by this authorProf. Dr. Chang Seop Hong
Department of Chemistry, Korea University, Seoul, 02841 Korea
Search for more papers by this authorYoungki Kim
Korea Testing & Research Institute, Gwacheon, 13810 Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Hogyu Han
Department of Chemistry, Korea University, Seoul, 02841 Korea
Search for more papers by this authorCorresponding Author
Dr. Kwang Soo Lim
Korea Testing & Research Institute, Gwacheon, 13810 Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Woo Ram Lee
School of Future Convergence, Department of Chemistry and Institute of, Applied Chemistry, Hallym University, Chuncheon, 24252 Korea
Department of Chemistry, Sejong University, Seoul, 05006 Korea
Search for more papers by this authorGraphical Abstract
Two new heterometallic metal–organic frameworks (MOFs), LnZnTPO, and two homometallic MOFs, LnTPO (Ln=Eu or Tb; H3TPO=tris(4-carboxyphenyl)phosphine oxide) were synthesized, and their structures and properties were analyzed. Solvothermal immersion of LnZnTPO in Ln3+ solution resulted in the framework metal–ion exchange affording LnTPO (see figure).
Abstract
Two new heterometallic metal–organic frameworks (MOFs), LnZnTPO 1 and 2, and two homometallic MOFs, LnTPO 3 and 4 (Ln=Eu for 1 and 3, and Tb for 2 and 4; H3TPO=tris(4-carboxyphenyl)phosphine oxide) were synthesized, and their structures and properties were analyzed. They were prepared by solvothermal reaction of the C3-symmetric ligand H3TPO with the corresponding metal ion(s) (a mixture of Ln3+ and Zn2+ for 1 and 2, and Ln3+ alone for 3 and 4). Single-crystal XRD (SXRD) analysis revealed that 1 and 3 are isostructural to 2 and 4, respectively. TGA showed that the framework is thermally stable up to about 400 °C for 1 and 2, and about 450 °C for 3 and 4. PXRD analysis showed their pore-structure distortions without noticeable framework–structure changes during drying processes. The shapes of gas sorption isotherms for 1 and 3 are almost identical to those for 2 and 4, respectively. Solvothermal immersion of 1 and 2 in Tb3+ and Eu3+ solutions resulted in the framework metal-ion exchange affording 4 and 3, respectively, as confirmed by photoluminescence (PL), PXRD, IR, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy-dispersive X-ray (EDX) analyses.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem201904866-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 1bO. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim, Nature 2003, 423, 705–714.
- 2
- 2aJ. Sculley, D. Yuan, H.-C. Zhou, Energy Environ. Sci. 2011, 4, 2721–2735;
- 2bM. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim, Chem. Rev. 2012, 112, 782–835;
- 2cM. T. Kapelewski, T. Runčevski, J. D. Tarver, H. Z. H. Jiang, K. E. Hurst, P. A. Parilla, A. Ayala, T. Gennett, S. A. FitzGerald, C. M. Brown, J. R. Long, Chem. Mater. 2018, 30, 8179–8189;
- 2dJ. L. C. Rowsell, O. M. Yaghi, Angew. Chem. Int. Ed. 2005, 44, 4670–4679;
- 3
- 3aS. Couck, J. F. M. Denayer, G. V. Baron, T. Rémy, J. Gascon, F. Kapteijn, J. Am. Chem. Soc. 2009, 131, 6326–6327;
- 3bA. Das, M. Choucair, P. D. Southon, J. A. Mason, M. Zhao, C. J. Kepert, A. T. Harris, D. M. D'Alessandro, Microporous Mesoporous Mater. 2013, 174, 74–80;
- 3cT. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong, J. R. Long, J. Am. Chem. Soc. 2012, 134, 7056–7065;
- 3dK. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781;
- 3eW. R. Lee, S. Y. Hwang, D. W. Ryu, K. S. Lim, S. S. Han, D. Moon, J. Choi, C. S. Hong, Energy Environ. Sci. 2014, 7, 744–751;
- 3fR. Haldar, S. K. Reddy, V. M. Suresh, S. Mohapatra, S. Balasubramanian, T. K. Maji, Chem. Eur. J. 2014, 20, 4347–4356;
- 3gN. Planas, A. L. Dzubak, R. Poloni, L.-C. Lin, A. McManus, T. M. McDonald, J. B. Neaton, J. R. Long, B. Smit, L. Gagliardi, J. Am. Chem. Soc. 2013, 135, 7402–7405;
- 3hA. M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gandara, J. A. Reimer, O. M. Yaghi, J. Am. Chem. Soc. 2014, 136, 8863–8866;
- 3iG. Chen, Z. Zhang, S. Xiang, B. Chen, CrystEngComm 2013, 15, 5232–5235;
- 3jM. Y. Masoomi, K. C. Stylianou, A. Morsali, P. Retailleau, D. Maspoch, Cryst. Growth Des. 2014, 14, 2092–2096;
- 3kS. Yang, J. Sun, A. J. Ramirez-Cuesta, S. K. Callear, W. I. F. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang, M. Schröder, Nat. Chem. 2012, 4, 887–894;
- 3lP.-Q. Liao, D.-D. Zhou, A.-X. Zhu, L. Jiang, R.-B. Lin, J.-P. Zhang, X.-M. Chen, J. Am. Chem. Soc. 2012, 134, 17380–17383.
- 4
- 4aA. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 2018, 47, 8134–8172;
- 4bA. Taher, D. W. Kim, I.-M. Lee, RSC Adv. 2017, 7, 17806–17812;
- 4cL. Zhu, X.-Q. Liu, H.-L. Jiang, L.-B. Sun, Chem. Rev. 2017, 117, 8129–8176;
- 4dA. Herbst, C. Janiak, CrystEngComm 2017, 19, 4092–4117;
- 4eY.-B. Huang, J. Liang, X.-S. Wang, R. Cao, Chem. Soc. Rev. 2017, 46, 126–157;
- 4fY.-Z. Li, H.-H. Wang, H.-Y. Yang, L. Hou, Y.-Y. Wang, Z. Zhu, Chem. Eur. J. 2018, 24, 865–871.
- 5
- 5aF.-Y. Yi, D. Chen, M.-K. Wu, L. Han, H.-L. Jiang, ChemPlusChem 2016, 81, 675–690;
- 5bA. Chidambaram, K. C. Stylianou, Inorg. Chem. Front. 2018, 5, 979–998;
- 5cV. Chernikova, O. Yassine, O. Shekhah, M. Eddaoudi, K. N. Salama, J. Mater. Chem. A 2018, 6, 5550–5554;
- 5dL. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105–1125;
- 5eX. Fang, B. Zong, S. Mao, Nano-Micro Lett. 2018, 10, 64.
- 6
- 6aW. R. Lee, D. W. Ryu, W. J. Phang, J. H. Park, C. S. Hong, Chem. Commun. 2012, 48, 10847–10849;
- 6bA. Nalaparaju, J. Jiang, J. Phys. Chem. C 2012, 116, 6925–6931;
- 6cC. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 8078–8081;
- 6dS. Das, H. Kim, K. Kim, J. Am. Chem. Soc. 2009, 131, 3814–3815.
- 7Y. Noori, K. Akhbari, RSC Adv. 2017, 7, 1782–1808.
- 8
- 8aZ. Jin, H. He, H. Zhao, T. Borjigin, F. Sun, D. Zhang, G. Zhu, Dalton Trans. 2013, 42, 13335–13338;
- 8bJ. Zhang, Y. Huang, D. Yue, Y. Cui, Y. Yang, G. Qian, J. Mater. Chem. B 2018, 6, 5174–5180;
- 8cY. Xiao, L. Wang, Y. Cui, B. Chen, F. Zapata, G. Qian, J. Alloys Compd. 2009, 484, 601–604;
- 8dB. Zhao, H.-L. Gao, X.-Y. Chen, P. Cheng, W. Shi, D.-Z. Liao, S.-P. Yan, Z.-H. Jiang, Chem. Eur. J. 2006, 12, 149–158;
- 8eS. Jensen, K. Tan, W. Lustig, D. Kilin, J. Li, Y. J. Chabal, T. Thonhauser, J. Mater. Chem. C 2019, 7, 2625–2632.
- 9W. R. Lee, D. W. Ryu, J. W. Lee, J. H. Yoon, E. K. Koh, C. S. Hong, Inorg. Chem. 2010, 49, 4723–4725.
- 10X.-Y. Li, W.-J. Shi, X.-Q. Wang, L.-N. Ma, L. Hou, Y.-Y. Wang, Cryst. Growth Des. 2017, 17, 4217–4224.
- 11
- 11aS. R. Caskey, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2008, 130, 10870–10871;
- 11bL.-C. Lin, J. Kim, X. Kong, E. Scott, T. M. McDonald, J. R. Long, J. A. Reimer, B. Smit, Angew. Chem. Int. Ed. 2013, 52, 4410–4413;
- 11cW. Lou, J. Yang, L. Li, J. Li, J. Solid State Chem. 2014, 213, 224–228.
- 12
- 12aJ.-M. Gu, T.-H. Kwon, J.-H. Park, S. Huh, Dalton Trans. 2010, 39, 5608–5610;
- 12bJ. Qian, Q. Li, L. Liang, T.-T. Li, Y. Hu, S. Huang, Dalton Trans. 2017, 46, 14102–14106;
- 12cA. Demessence, D. M. D'Alessandro, M. L. Foo, J. R. Long, J. Am. Chem. Soc. 2009, 131, 8784–8786.
- 13X.-Y. Li, Z.-J. Li, Y.-Z. Li, L. Hou, Z. Zhu, Y.-Y. Wang, Inorg. Chem. 2018, 57, 12417–12423.
- 14
- 14aR. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Angew. Chem. Int. Ed. 2003, 42, 428–431;
- 14bI. Imaz, G. Bravic, J.-P. Sutter, Dalton Trans. 2005, 2681–2687.
- 15
- 15aS. J. Gregg, K. S. W. Sing, Adsorption, Surface Area, and Porosity, 2nd ed., Academic Press, New York, 1982;
- 15bS. Brunauer, L. S. Deming, W. E. Deming, E. Teller, J. Am. Chem. Soc. 1940, 62, 1723–1732.
- 16J. Rouquerol, F. Rouquerol, K. S. W. Sing, P. Llewellyn, G. Maurin, Adsorption by Powders and Porous Solids: Principles, Methodology, and Application, 2nd ed., Academic Press, Oxford, 2014.
- 17
- 17aN. Sabbatini, M. Guardigli, J.-M. Lehn, Coord. Chem. Rev. 1993, 123, 201–228;
- 17bD. Wang, C. Zheng, L. Fan, Y. Hu, J. Zheng, Spectrochim. Acta Part A 2014, 117, 245–249.
- 18
- 18aM. Khorasani-Motlagh, M. Noroozifar, S. Niroomand, A. Moodi, J. Lumin. 2013, 143, 56–62;
- 18bT. Xia, T. Song, G. Zhang, Y. Cui, Y. Yang, Z. Wang, G. Qian, Chem. Eur. J. 2016, 22, 18429–18434.
- 19G. E. Gomez, A. M. Kaczmarek, R. Van Deun, E. V. Brusau, G. E. Narda, D. Vega, M. Iglesias, E. Gutierrez-Puebla, M. Á. Monge, Eur. J. Inorg. Chem. 2016, 1577–1588.