Noncovalent Functionalization of Few-Layered Antimonene with Fullerene Clusters and Photoinduced Charge Separation in the Composite
Corresponding Author
Prof. Dr. Tomokazu Umeyama
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorTomoya Ohara
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorDr. Yusuke Tsutsui
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorShota Nakano
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Shu Seki
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Hiroshi Imahori
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Tomokazu Umeyama
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorTomoya Ohara
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorDr. Yusuke Tsutsui
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorShota Nakano
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Shu Seki
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Hiroshi Imahori
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
Search for more papers by this authorGraphical Abstract
Few-layered antimonene (FLSb) nanosheets were noncovalently functionalized with C60 clusters by quick addition of a poor solvent into a mixed dispersion of FLSb and C60 in a good solvent. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed the occurrence of photoinduced charge separation in the nanocomposite.
Abstract
Few-layered antimonene (FLSb) nanosheets were noncovalently functionalized with fullerene C60 clusters by quick addition of a poor solvent (i.e., acetonitrile) into a mixed dispersion of FLSb and C60 in a good solvent (i.e., toluene). In a flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurement, the FLSb-C60 composite, (FLSb+C60)m, showed a rapid rise in transient conductivity, whereas no conductivity signal was observed in the single components, FLSb and C60. This demonstrated the occurrence of photoinduced charge separation between FLSb and C60 in (FLSb+C60)m. Furthermore, a photoelectrochemical device with an electrophoretically deposited (FLSb+C60)m film exhibited an enhanced efficiency of photocurrent generation, compared to those of the single-components, FLSb and C60, due to the photoinduced charge separation between FLSb and C60. This work provides a promising approach for fabrication of antimonene–organic molecule composites and paves the way for their application in optoelectronics.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202001740-sup-0001-misc_information.pdf3.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Chem. Rev. 2017, 117, 6225–6331.
- 2S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, H. Zeng, Chem. Soc. Rev. 2018, 47, 982–1021.
- 3
- 3aB. Li, C. Lai, G. Zeng, D. Huang, L. Qin, M. Zhang, M. Cheng, X. Liu, H. Yi, C. Zhou, F. Huang, S. Liu, Y. Fu, Small 2019, 15, 1804565;
- 3bH. Liu, Y. Du, Y. Deng, P. D. Ye, Chem. Soc. Rev. 2015, 44, 2732–2743.
- 4S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, A. Roelofs, Nano Lett. 2014, 14, 5733–5739.
- 5H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye, ACS Nano 2014, 8, 4033–4041.
- 6
- 6aJ. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, M. C. Hersam, Nano Lett. 2014, 14, 6964–6970;
- 6bJ. O. Island, G. A. Steele, H. S. J. v. d. Zant, A. Castellanos-Gomez, 2D Mater. 2015, 2, 011002.
- 7
- 7aX. Wang, J. Song, J. Qu, Angew. Chem. Int. Ed. 2019, 58, 1574–1584; Angew. Chem. 2019, 131, 1588–1599;
- 7bP. Ares, J. J. Palacios, G. Abellán, J. Gómez-Herrero, F. Zamora, Adv. Mater. 2018, 30, 1703771.
- 8
- 8aS. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 2016, 55, 1666–1669; Angew. Chem. 2016, 128, 1698–1701;
- 8bX. Wang, J. He, B. Zhou, Y. Zhang, J. Wu, R. Hu, L. Liu, J. Song, J. Qu, Angew. Chem. Int. Ed. 2018, 57, 8668–8673; Angew. Chem. 2018, 130, 8804–8809;
- 8cJ. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Nat. Commun. 2016, 7, 13352.
- 9
- 9aC. Zhang, Y. Li, P. Zhang, M. Qiu, X. Jiang, H. Zhang, Sol. Energy Mater. Sol. Cells 2019, 189, 11–20;
- 9bF. Zhang, J. He, Y. Xiang, K. Zheng, B. Xue, S. Ye, X. Peng, Y. Hao, J. Lian, P. Zeng, J. Qu, J. Song, Adv. Mater. 2018, 30, 1803244;
- 9cZ. Wang, R. Zhang, M. Zhao, Z. Wang, B. Wei, X. Zhang, S. Feng, H. Cao, P. Liu, Y. Hao, H. Wang, B. Xu, S. J. Pennycook, J. Guo, J. Mater. Chem. A 2018, 6, 23773–23779.
- 10J. Gu, Z. Du, C. Zhang, J. Ma, B. Li, S. Yang, Adv. Energy Mater. 2017, 7, 1700447.
- 11
- 11aR. Gusmão, Z. Sofer, D. Bouša, M. Pumera, Angew. Chem. Int. Ed. 2017, 56, 14417–14422; Angew. Chem. 2017, 129, 14609–14614;
- 11bF. Li, M. Xue, J. Li, X. Ma, L. Chen, X. Zhang, D. R. MacFarlane, J. Zhang, Angew. Chem. Int. Ed. 2017, 56, 14718–14722; Angew. Chem. 2017, 129, 14910–14914;
- 11cC. Gibaja, M. Assebban, I. Torres, M. Fickert, R. Sanchis-Gual, I. Brotons, W. S. Paz, J. J. Palacios, E. G. Michel, G. Abellán, F. Zamora, J. Mater. Chem. A 2019, 7, 22475–22486;
- 11dX. Ren, Z. Li, H. Qiao, W. Liang, H. Liu, F. Zhang, X. Qi, Y. Liu, Z. Huang, D. Zhang, J. Li, J. Zhong, H. Zhang, ACS Appl. Energy Mater. 2019, 2, 4774–4781.
- 12W. Tao, X. Ji, X. Xu, M. A. Islam, Z. Li, S. Chen, P. E. Saw, H. Zhang, Z. Bharwani, Z. Guo, J. Shi, O. C. Farokhzad, Angew. Chem. Int. Ed. 2017, 56, 11896–11900; Angew. Chem. 2017, 129, 12058–12062.
- 13P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gómez-Herrero, F. Zamora, Adv. Mater. 2016, 28, 6332–6336.
- 14C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gómez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellán, F. Zamora, Angew. Chem. Int. Ed. 2016, 55, 14345–14349; Angew. Chem. 2016, 128, 14557–14561.
- 15G. Abellán, P. Ares, S. Wild, E. Nuin, C. Neiss, D. R.-S. Miguel, P. Segovia, C. Gibaja, E. G. Michel, A. Görling, F. Hauke, J. Gómez-Herrero, A. Hirsch, F. Zamora, Angew. Chem. Int. Ed. 2017, 56, 14389–14394; Angew. Chem. 2017, 129, 14581–14586.
- 16Q. Xiao, C.-X. Hu, H.-R. Wu, Y.-Y. Ren, X.-Y. Li, Q.-Q. Yang, G.-H. Dun, Z.-P. Huang, Y. Peng, F. Yan, Q. Wang, H.-L. Zhang, Nanoscale Horiz. 2020, 5, 124–130.
- 17H. Imahori, Bull. Chem. Soc. Jpn. 2007, 80, 621–636.
- 18T. Umeyama, H. Imahori, Acc. Chem. Res. 2019, 52, 2046–2055.
- 19
- 19aM. Chen, R. Guan, S. Yang, Adv. Sci. 2019, 6, 1800941;
- 19bX. Cui, D. Han, H. Guo, L. Zhou, J. Qiao, Q. Liu, Z. Cui, Y. Li, C. Lin, L. Cao, W. Ji, H. Petek, M. Feng, Nat. Commun. 2019, 10, 3374;
- 19cX. Zhu, T. Zhang, D. Jiang, H. Duan, Z. Sun, M. Zhang, H. Jin, R. Guan, Y. Liu, M. Chen, H. Ji, P. Du, W. Yan, S. Wei, Y. Lu, S. Yang, Nat. Commun. 2018, 9, 4177;
- 19dM. Shi, S. Huang, N. Dong, Z. Liu, F. Gan, J. Wang, Y. Chen, Chem. Commun. 2018, 54, 366–369;
- 19eJ. Sun, G. Zheng, H.-W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Nano Lett. 2014, 14, 4573–4580.
- 20
- 20aT. Umeyama, J. Baek, N. Tezuka, K. Morita, H. Imahori, ECS J. Solid State Sci. Technol. 2013, 2, M3001–M3007;
- 20bJ. Baek, T. Umeyama, W. Choi, Y. Tsutsui, H. Yamada, S. Seki, H. Imahori, Chem. Eur. J. 2018, 24, 1561–1572.
- 21
- 21aY.-P. Sun, B. Ma, C. E. Bunker, B. Liu, J. Am. Chem. Soc. 1995, 117, 12705–12711;
- 21bS. Nath, H. Pal, D. K. Palit, A. V. Sapre, J. P. Mittal, J. Phys. Chem. B 1998, 102, 10158–10164;
- 21cP. V. Kamat, S. Barazzouk, K. G. Thomas, S. Hotchandani, J. Phys. Chem. B 2000, 104, 4014–4017;
- 21dT. Umeyama, N. Tezuka, M. Fujita, S. Hayashi, N. Kadota, Y. Matano, H. Imahori, Chem. Eur. J. 2008, 14, 4875–4885.
- 22
- 22aR. E. Haulier, J. Conceicao, L. P. F. Chibante, Y. Chai, N. E. Byrne, S. Flanagan, M. M. Haley, S. C. O'Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Hauge, J. L. Margrave, L. J. Wilson, R. F. Curl, R. E. Smalley, J. Phys. Chem. 1990, 94, 8634–8636;
- 22bQ. Xie, F. Arias, L. Echegoyen, J. Am. Chem. Soc. 1993, 115, 9818–9819.
- 23S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 2015, 54, 3112–3115; Angew. Chem. 2015, 127, 3155–3158.
- 24J. Catalán, J. Elguero, J. Am. Chem. Soc. 1993, 115, 9249–9252.
- 25H. N. Ghosh, A. V. Sapre, J. P. Mittal, J. Phys. Chem. 1996, 100, 9439–9443.
- 26C. Luo, D. M. Guldi, H. Imahori, K. Tamaki, Y. Sakata, J. Am. Chem. Soc. 2000, 122, 6535–6551.
- 27K.-N. Li, Y.-F. Wang, Y.-F. Xu, H.-Y. Chen, C.-Y. Su, D.-B. Kuang, ACS Appl. Mater. Interfaces 2013, 5, 5105–5111.
- 28S. Seki, A. Saeki, T. Sakurai, D. Sakamaki, Phys. Chem. Chem. Phys. 2014, 16, 11093–11113.