Stimuli-Responsive Resorcin[4]arene Cavitands: Toward Visible-Light-Activated Molecular Grippers
Corresponding Author
Dr. Víctor García-López
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Michal Zalibera
Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
Search for more papers by this authorDr. Nils Trapp
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Martin Kuss-Petermann
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
Search for more papers by this authorProf. Dr. Oliver S. Wenger
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. François Diederich
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
Search for more papers by this authorCorresponding Author
Dr. Víctor García-López
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Michal Zalibera
Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
Search for more papers by this authorDr. Nils Trapp
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
Search for more papers by this authorDr. Martin Kuss-Petermann
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
Search for more papers by this authorProf. Dr. Oliver S. Wenger
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. François Diederich
Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, HCI, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
Search for more papers by this authorGraphical Abstract
Kite in a vase: Resorcin[4]arene cavitands functionalized with an electron-accepting quinone and a [Ru(bpy)2dppz]2+ (bpy=2,2′-bipyridine, dppz=dipyrido[3,2-a:2′,3′-c]phenazine) photosensitizing wall can be switched upon visible-light irradiation between a flat kite in the quinone state Q and a vase conformation in the semiquinone radical anion state SQ. Conformational switching can also be triggered by changes in solvent or host–guest interactions.
Abstract
Resorcin[4]arene cavitands, equipped with diverse quinone (Q) and [Ru(bpy)2dppz]2+ (bpy=2,2′-bipyridine, dppz=dipyrido[3,2-a:2′,3′-c]phenazine) photosensitizing walls in different configurations, were synthesized. Upon visible-light irradiation at 420 nm, electron transfer from the [Ru(bpy)2dppz]2+ to the Q generates the semiquinone (SQ) radical anion, triggering a large conformational switching from a flat kite to a vase with a cavity for the encapsulation of small guests, such as cyclohexane and heteroalicyclic derivatives, in CD3CN. Depending on the molecular design, the SQ radical anion can live for several minutes (≈10 min) and the vase can be generated in a secondary process without need for addition of a sacrificial electron donor to accumulate the SQ state. Switching can also be triggered by other stimuli, such as changes in solvent, host–guest complexation, and chemical and electrochemical processes. This comprehensive investigation benefits the development of stimuli-responsive nanodevices, such as light-activated molecular grippers.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202001788-sup-0001-misc_information.pdf5.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. L. Anelli, N. Spencer, J. F. Stoddart, J. Am. Chem. Soc. 1991, 113, 5131–5133.
- 2M. von Delius, E. M. Geertsema, D. A. Leigh, Nat. Chem. 2010, 2, 96–101.
- 3T. Kudernac, N. Ruangsupapichat, M. Parschau, M. Maciá, N. Katsonis, S. R. Harutyunyan, K.-H. Ernst, B. L. Feringa, Nature 2011, 479, 208–211.
- 4A. Coskun, M. Banaszak, R. D. Astumian, J. F. Stoddart, B. A. Grzybowski, Chem. Soc. Rev. 2012, 41, 19–30.
- 5B. Lewandowski, G. De Bo, J. W. Ward, M. Papmeyer, S. Kuschel, M. J. Aldegunde, P. M. E. Gramlich, D. Heckmann, S. M. Goldup, D. M. D'Souza, A. E. Fernandes, D. A. Leigh, Science 2013, 339, 189–193.
- 6K. Zhu, C. A. O'Keefe, V. N. Vukotic, R. W. Schurko, S. J. Loeb, Nat. Chem. 2015, 7, 514–519.
- 7C. Cheng, P. R. McGonigal, S. T. Schneebeli, H. Li, N. A. Vermeulen, C. Ke, J. F. Stoddart, Nat. Nanotechnol. 2015, 10, 547–553.
- 8S. Kassem, A. T. L. Lee, D. A. Leigh, A. Markevicius, J. Solà, Nat. Chem. 2016, 8, 138–143.
- 9B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 11060–11078;
Angew. Chem. 2017, 129, 11206–11226.
10.1002/ange.201702979 Google Scholar
- 10V. García-López, L. B. Alemany, P.-T. Chiang, J. Sun, P.-L. Chu, A. A. Martí, J. M. Tour, Tetrahedron 2017, 73, 4864–4873.
- 11C. Pezzato, M. T. Nguyen, D. J. Kim, O. Anamimoghadam, L. Mosca, J. F. Stoddart, Angew. Chem. Int. Ed. 2018, 57, 9325–9329;
Angew. Chem. 2018, 130, 9469–9473.
10.1002/ange.201803848 Google Scholar
- 12T. Sun, G. Zhang, Q. Wang, Z. Guo, Q. Chen, X. Chen, Y. Lu, Y. Zhang, Y. Zhang, Q. Guo, X. Gao, Y. Cheng, C. Jiang, Biomaterials 2019, 204, 46–58.
- 13G. J. Simpson, V. García-López, A. D. Boese, J. M. Tour, L. Grill, Nat. Commun. 2019, 10, 4631.
- 14V. García-López, D. Liu, J. M. Tour, Chem. Rev. 2020, 120, 79–124.
- 15F.-G. Klärner, B. Kahlert, Acc. Chem. Res. 2003, 36, 919–932.
- 16I. K. Mati, S. L. Cockroft, Chem. Soc. Rev. 2010, 39, 4195–4205.
- 17K. Hermann, Y. Ruan, A. M. Hardin, C. M. Hadad, J. D. Badjić, Chem. Soc. Rev. 2015, 44, 500–514.
- 18B. Doistau, L. Benda, J.-L. Cantin, L.-M. Chamoreau, E. Ruiz, V. Marvaud, B. Hasenknopf, G. Vives, J. Am. Chem. Soc. 2017, 139, 9213–9220.
- 19C. Gropp, B. L. Quigley, F. Diederich, J. Am. Chem. Soc. 2018, 140, 2705–2717.
- 20J. V. Milić, F. Diederich, Chem. Eur. J. 2019, 25, 8440–8452.
- 21J. V. Milić, T. Schneeberger, M. Zalibera, F. Diederich, C. Boudon, L. Ruhlmann, Electrochim. Acta 2019, 313, 544–560.
- 22J. R. Moran, J. L. Ericson, E. Dalcanale, J. A. Bryant, C. B. Knobler, D. J. Cram, J. Am. Chem. Soc. 1991, 113, 5707–5714.
- 23V. A. Azov, B. Jaun, F. Diederich, Helv. Chim. Acta 2004, 87, 449–462.
- 24J. R. Moran, S. Karbach, D. J. Cram, J. Am. Chem. Soc. 1982, 104, 5826–5828.
- 25L. M. Tunstad, J. A. Tucker, E. Dalcanale, J. Weiser, J. A. Bryant, J. C. Sherman, R. C. Helgeson, C. B. Knobler, D. J. Cram, J. Org. Chem. 1989, 54, 1305–1312.
- 26D. J. Cram, J. M. Cram, Container Molecules and Their Guests, RSC, Cambridge, 1994.
- 27P. J. Skinner, A. G. Cheetham, A. Beeby, V. Gramlich, F. Diederich, Helv. Chim. Acta 2001, 84, 2146–2153.
- 28P. Roncucci, L. Pirondini, G. Paderni, C. Massera, E. Dalcanale, V. A. Azov, F. Diederich, Chem. Eur. J. 2006, 12, 4775–4784.
- 29I. Pochorovski, C. Boudon, J.-P. Gisselbrecht, M.-O. Ebert, W. B. Schweizer, F. Diederich, Angew. Chem. Int. Ed. 2012, 51, 262–266;
Angew. Chem. 2012, 124, 269–273.
10.1002/ange.201106031 Google Scholar
- 30M. Frei, F. Marotti, F. Diederich, Chem. Commun. 2004, 1362–1363.
- 31I. Pochorovski, J. Milić, D. Kolarski, C. Gropp, W. B. Schweizer, F. Diederich, J. Am. Chem. Soc. 2014, 136, 3852–3858.
- 32O. B. Berryman, A. C. Sather, J. Rebek, Jr., Chem. Commun. 2011, 47, 656–658.
- 33J. Milić, M. Zalibera, I. Pochorovski, N. Trapp, J. Nomrowski, D. Neshchadin, L. Ruhlmann, C. Boudon, O. S. Wenger, A. Savitsky, W. Lubitz, G. Gescheidt, F. Diederich, J. Phys. Chem. Lett. 2016, 7, 2470–2477.
- 34J. Milić, M. Zalibera, D. Talaat, J. Nomrowski, N. Trapp, L. Ruhlmann, C. Boudon, O. S. Wenger, A. Savitsky, W. Lubitz, F. Diederich, Chem. Eur. J. 2018, 24, 1431–1440.
- 35Y. Pellegrin, F. Odobel, C. R. Chimie 2017, 20, 283–295.
- 36V. García-López, J. V. Milić, M. Zalibera, D. Neshchadin, M. Kuss-Petermann, L. Ruhlmann, J. Nomrowski, N. Trapp, C. Boudon, G. Gescheidt, O. S. Wenger, F. Diederich, Tetrahedron 2018, 74, 5615–5626.
- 37I. Pochorovski, F. Diederich, Acc. Chem. Res. 2014, 47, 2096–2105.
- 38Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 39P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270–283.
- 40W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284–298.
- 41J. Fees, W. Kaim, M. Moscherosch, W. Matheis, J. Klíma, M. Krejčík, S. Záliš, Inorg. Chem. 1993, 32, 166–174.
- 42R. Calvo, E. C. Abresch, R. Bittl, G. Feher, W. Hofbauer, R. A. Isaacson, W. Lubitz, M. Y. Okamura, M. L. Paddock, J. Am. Chem. Soc. 2000, 122, 7327–7341.
- 43D. F. Hahn, J. V. Milić, P. H. Hünenberger, Helv. Chim. Acta 2019, 102, e1900060.
- 44P. P. Castro, G. Zhao, G. A. Masangkay, C. Hernandez, L. M. Gutierrez-Tunstad, Org. Lett. 2004, 6, 333–336.