Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO2 Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere
Amir Lashgari
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
These authors contributed equally to this work.
Search for more papers by this authorCaroline K. Williams
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
These authors contributed equally to this work.
Search for more papers by this authorJenna L. Glover
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
Search for more papers by this authorYueshen Wu
Department of Chemistry, Yale University, New Haven, Connecticut, 06520 United States
Search for more papers by this authorDr. Jingchao Chai
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
Search for more papers by this authorCorresponding Author
Prof. Jianbing “Jimmy” Jiang
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
Search for more papers by this authorAmir Lashgari
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
These authors contributed equally to this work.
Search for more papers by this authorCaroline K. Williams
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
These authors contributed equally to this work.
Search for more papers by this authorJenna L. Glover
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
Search for more papers by this authorYueshen Wu
Department of Chemistry, Yale University, New Haven, Connecticut, 06520 United States
Search for more papers by this authorDr. Jingchao Chai
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
Search for more papers by this authorCorresponding Author
Prof. Jianbing “Jimmy” Jiang
Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH, 45221 United States
Search for more papers by this authorGraphical Abstract
A set of zinc porphyrin electrocatalysts with flexible triazole units as the second coordination spheres is prepared for cooperative-effect studies. The electrocatalyst with a triazole bundle displays efficient CO2-to-CO conversion with a Faradaic efficiency of 99 % and a current density of −6.2 mA cm−2 at −2.4 V vs. Fc/Fc+.
Abstract
The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of −6.2 mA cm−2 at −2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2-catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202002813-sup-0001-misc_information.pdf2.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. H. Jeoung, H. Dobbek, Science 2007, 318, 1461–1464.
- 2
- 2aS. Roy, B. Sharma, J. Pecaut, P. Simon, M. Fontecave, P. D. Tran, E. Derat, V. Artero, J. Am. Chem. Soc. 2017, 139, 3685–3696;
- 2bA. Chapovetsky, T. H. Do, R. Haiges, M. K. Takase, S. C. Marinescu, J. Am. Chem. Soc. 2016, 138, 5765–5768;
- 2cC. Costentin, S. Drouet, M. Robert, J. M. Savéant, Science 2012, 338, 90–94;
- 2dC. Costentin, G. Passard, M. Robert, J. M. Savéant, Proc. Natl. Acad. Sci. USA 2014, 111, 14990–14994;
- 2eI. Azcarate, C. Costentin, M. Robert, J. M. Savéant, J. Am. Chem. Soc. 2016, 138, 16639–16644;
- 2fN. D. Loewen, L. A. Berben, Inorg. Chem. 2019, 58, 16849–16857;
- 2gD. Z. Zee, M. Nippe, A. E. King, C. J. Chang, J. R. Long, Inorg. Chem. 2020, 59, 5206–5217.
- 3
- 3aD. L. DuBois, Inorg. Chem. 2014, 53, 3935–3960;
- 3bQ. Liao, T. Liu, S. I. Johnson, C. M. Klug, E. S. Wiedner, R. Morris Bullock, D. L. DuBois, Dalton Trans. 2019, 48, 4867–4878;
- 3cM. Fang, E. S. Wiedner, W. G. Dougherty, W. S. Kassel, T. Liu, D. L. DuBois, R. M. Bullock, Organometallics 2014, 33, 5820–5833.
- 4
- 4aB. Ginovska-Pangovska, A. Dutta, M. L. Reback, J. C. Linehan, W. J. Shaw, Acc. Chem. Res. 2014, 47, 2621–2630;
- 4bA. Dutta, B. Ginovska, S. Raugei, J. A. Roberts, W. J. Shaw, Dalton Trans. 2016, 45, 9786–9793;
- 4cA. Dutta, S. Lense, J. A. S. Roberts, M. L. Helm, W. J. Shaw, Eur. J. Inorg. Chem. 2015, 5218–5225;
- 4dT. Liu, M. R. DuBois, D. L. DuBois, R. M. Bullock, Energy Environ. Sci. 2014, 7, 3630–3639.
- 5
- 5aD. W. Shaffer, Y. Xie, D. J. Szalda, J. J. Concepcion, J. Am. Chem. Soc. 2017, 139, 15347–15355;
- 5bN. Vereshchuk, R. Matheu, J. Benet Buchholz, M. Pipelier, J. Lebreton, D. Dubreuil, A. Tessier, C. Gimbert-Surinach, M. Z. Ertem, A. Llobet, J. Am. Chem. Soc. 2020, 142, 5068–5077;
- 5cW. A. Hoffert, M. T. Mock, A. M. Appel, J. Y. Yang, Eur. J. Inorg. Chem. 2013, 3846–3857;
- 5dJ. F. Khosrowabadi Kotyk, C. M. Hanna, R. L. Combs, J. W. Ziller, J. Y. Yang, Chem. Sci. 2018, 9, 2750–2755.
- 6J. M. Barlow, J. Y. Yang, ACS Cent. Sci. 2019, 5, 580–588.
- 7
- 7aL. Kohler, J. Niklas, R. C. Johnson, M. Zeller, O. G. Poluektov, K. L. Mulfort, Inorg. Chem. 2019, 58, 1697–1709;
- 7bM. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, Science 2011, 333, 863–866.
- 8J. Agarwal, T. W. Shaw, H. F. Schaefer III, A. B. Bocarsly, Inorg. Chem. 2015, 54, 5285–5294.
- 9P. Gotico, B. Boitrel, R. Guillot, M. Sircoglou, A. Quaranta, Z. Halime, W. Leibl, A. Aukauloo, Angew. Chem. Int. Ed. 2019, 58, 4504–4509;
Angew. Chem. 2019, 131, 4552–4557.
10.1002/ange.201814339 Google Scholar
- 10E. M. Nichols, J. S. Derrick, S. K. Nistanaki, P. T. Smith, C. J. Chang, Chem. Sci. 2018, 9, 2952–2960.
- 11
- 11aJ. Rosenthal, D. G. Nocera, Acc. Chem. Res. 2007, 40, 543–553;
- 11bC. T. Carver, B. D. Matson, J. M. Mayer, J. Am. Chem. Soc. 2012, 134, 5444–5447.
- 12
- 12aB. Mondal, A. Rana, P. Sen, A. Dey, J. Am. Chem. Soc. 2015, 137, 11214–11217;
- 12bS. Samanta, K. Sengupta, K. Mittra, S. Bandyopadhyay, A. Dey, Chem. Commun. 2012, 48, 7631–7633;
- 12cB. Mondal, P. Sen, A. Rana, D. Saha, P. Das, A. Dey, ACS Catal. 2019, 9, 3895–3899;
- 12dC. K. Williams, A. Lashgari, J. Chai, J. Jiang, ChemSusChem 2020, 13, 3412–3417.
- 13
- 13aS. Sung, X. Li, L. M. Wolf, J. R. Meeder, N. S. Bhuvanesh, K. A. Grice, J. A. Panetier, M. Nippe, J. Am. Chem. Soc. 2019, 141, 6569–6582;
- 13bS. Sung, D. Kumar, M. Gil-Sepulcre, M. Nippe, J. Am. Chem. Soc. 2017, 139, 13993–13996.
- 14A. Rana, B. Mondal, P. Sen, S. Dey, A. Dey, Inorg. Chem. 2017, 56, 1783–1793.
- 15A. D. Wilson, R. K. Shoemaker, A. Miedaner, J. T. Muckerman, D. L. DuBois, M. R. DuBois, Proc. Natl. Acad. Sci. USA 2007, 104, 6951–6956.
- 16See of reference [4c]
- 17
- 17aE. Tayyebi, J. Hussain, Y. Abghoui, E. Skúlason, J. Phys. Chem. C 2018, 122, 10078–10087;
- 17bM. Bourrez, F. Molton, S. Chardon-Noblat, A. Deronzier, Angew. Chem. Int. Ed. 2011, 50, 9903–9906;
Angew. Chem. 2011, 123, 10077–10080;
10.1002/ange.201103616 Google Scholar
- 17cT. R. O'Toole, L. D. Margerum, T. D. Westmoreland, W. J. Vining, R. W. Murray, T. J. Meyer, J. Chem. Soc. Chem. Commun. 1985, 1416–1417;
- 17dJ. Hawecker, J.-M. Lehn, R. Ziessel, J. Chem. Soc. Chem. Commun. 1984, 328–330;
- 17eA. Singha, K. Mittra, A. Dey, Dalton Trans. 2019, 48, 7179–7186;
- 17fP. Sen, B. Mondal, D. Saha, A. Rana, A. Dey, Dalton Trans. 2019, 48, 5965–5977;
- 17gE. M. Nichols, C. J. Chang, Organometallics 2019, 38, 1213–1218;
- 17hC. Jiang, A. W. Nichols, C. W. Machan, Dalton Trans. 2019, 48, 9454–9468.
- 18
- 18aO. R. Luca, R. H. Crabtree, Chem. Soc. Rev. 2013, 42, 1440–1459;
- 18bA. Z. Haddad, D. Kumar, K. Ouch Sampson, A. M. Matzner, M. S. Mashuta, C. A. Grapperhaus, J. Am. Chem. Soc. 2015, 137, 9238–9241;
- 18cE. J. Thompson, L. A. Berben, Angew. Chem. Int. Ed. 2015, 54, 11642–11646;
Angew. Chem. 2015, 127, 11808–11812;
10.1002/ange.201503935 Google Scholar
- 18dB. H. Solis, A. G. Maher, D. K. Dogutan, D. G. Nocera, S. Hammes-Schiffer, Proc. Natl. Acad. Sci. USA 2016, 113, 485–492.
- 19E. M. Leitao, T. Jurca, I. Manners, Nat. Chem. 2013, 5, 817–829.
- 20R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631–4701.
- 21
- 21aB. J. McNicholas, J. D. Blakemore, A. B. Chang, C. M. Bates, W. W. Kramer, R. H. Grubbs, H. B. Gray, J. Am. Chem. Soc. 2016, 138, 11160–11163;
- 21bC. I. Shaughnessy, D. J. Sconyers, T. A. Kerr, H. J. Lee, B. Subramaniam, K. C. Leonard, J. D. Blakemore, ChemSusChem 2019, 12, 3761–3768;
- 21cA. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. Kenis, C. A. Kerfeld, R. H. Morris, C. H. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621–6658.
- 22P. Kang, Z. Chen, M. Brookhart, T. J. Meyer, Top. Catal. 2015, 58, 30–45.
- 23J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631–675.
- 24
- 24aA. W. Nichols, C. W. Machan, Front. Chem. 2019, 7, 397;
- 24bN. Kaeffer, A. Morozan, J. Fize, E. Martinez, L. Guetaz, V. Artero, ACS Catal. 2016, 6, 3727–3737;
- 24cM. Yousif, A. C. Cabelof, P. D. Martin, R. L. Lord, S. Groysman, Dalton Trans. 2016, 45, 9794–9804;
- 24dR. Narayanan, M. McKinnon, B. R. Reed, K. T. Ngo, S. Groysman, J. Rochford, Dalton Trans. 2016, 45, 15285–15289.
- 25A. Goeppert, M. Czaun, J. P. Jones, G. K. Surya Prakash, G. A. Olah, Chem. Soc. Rev. 2014, 43, 7995–8048.
- 26
- 26aS. L. Hooe, J. M. Dressel, D. A. Dickie, C. W. Machan, ACS Catal. 2020, 10, 1146–1151;
- 26bZ. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X. F. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Y. Liang, Z. Feng, H. Wang, Nat. Commun. 2018, 9, 415;
- 26cY. Wu, J. Jiang, Z. Weng, M. Wang, D. L. J. Broere, Y. Zhong, G. W. Brudvig, Z. Feng, H. Wang, ACS Cent. Sci. 2017, 3, 847–852;
- 26dJ. Jiang, A. J. Matula, J. R. Swierk, N. Romano, Y. Wu, V. S. Batista, R. H. Crabtree, J. S. Lindsey, H. Wang, G. W. Brudvig, ACS Catal. 2018, 8, 10131–10136.
- 27
- 27aM. Abdinejad, A. Seifitokaldani, C. Dao, E. H. Sargent, X.-A. Zhang, H. B. Kraatz, ACS Appl. Energy Mater. 2019, 2, 1330–1335;
- 27bC. G. Margarit, C. Schnedermann, N. G. Asimow, D. G. Nocera, Organometallics 2019, 38, 1219–1223;
- 27cC. Costentin, M. Robert, J. M. Savéant, Acc. Chem. Res. 2015, 48, 2996–3006.
- 28
- 28aJ. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney, A. M. Marguerettaz, J. Org. Chem. 1987, 52, 827–836;
- 28bR. W. Wagner, T. E. Johnson, J. S. Lindsey, Tetrahedron 1997, 53, 6755–6790.
- 29J. S. Lindsey, Acc. Chem. Res. 2010, 43, 300–311.
- 30Y. Y. Birdja, J. Shen, M. T. M. Koper, Catal. Today 2017, 288, 37–47.
- 31E. Haviv, D. Azaiza-Dabbah, R. Carmieli, L. Avram, J. M. L. Martin, R. Neumann, J. Am. Chem. Soc. 2018, 140, 12451–12456.
- 32C. Costentin, G. Passard, M. Robert, J. M. Savéant, J. Am. Chem. Soc. 2014, 136, 11821–11829.
- 33D. R. Weinberg, C. J. Gagliardi, J. F. Hull, C. F. Murphy, C. A. Kent, B. C. Westlake, A. Paul, D. H. Ess, D. G. McCafferty, T. J. Meyer, Chem. Rev. 2012, 112, 4016–4093.
- 34M. Fathalla, S. C. Li, U. Diebold, A. Alb, J. Jayawickramarajah, Chem. Commun. 2009, 4209–4211.
- 35
- 35aJ. E. B. Randles, Trans. Faraday Soc. 1948, 44, 322–327;
- 35bJ. E. B. Randles, Trans. Faraday Soc. 1948, 44, 327–338;
- 35cA. Ševčík, Collect. Czech. Chem. Commun. 1948, 13, 349–377.
- 36B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, T. J. Meyer, J. Chem. Soc. Chem. Commun. 1985, 1414–1416.
- 37A. M. Appel, M. L. Helm, ACS Catal. 2014, 4, 630–633.
- 38K. T. Ngo, M. McKinnon, B. Mahanti, R. Narayanan, D. C. Grills, M. Z. Ertem, J. Rochford, J. Am. Chem. Soc. 2017, 139, 2604–2618.
- 39E. S. Rountree, B. D. McCarthy, T. T. Eisenhart, J. L. Dempsey, Inorg. Chem. 2014, 53, 9983–10002.
- 40
- 40aY. Fang, Y. G. Gorbunova, P. Chen, X. Jiang, M. Manowong, A. A. Sinelshchikova, Y. Y. Enakieva, A. G. Martynov, A. Y. Tsivadze, A. Bessmertnykh-Lemeune, C. Stern, R. Guilard, K. M. Kadish, Inorg. Chem. 2015, 54, 3501–3512;
- 40bA. G. Maher, M. Liu, D. G. Nocera, Inorg. Chem. 2019, 58, 7958–7968.
- 41
- 41aY. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrochim. Acta 1994, 39, 1833–1839;
- 41bJ. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore, F. Jiao, ACS Catal. 2015, 5, 4586–4591;
- 41cW. Luo, J. Zhang, M. Li, A. Züttel, ACS Catal. 2019, 9, 3783–3791.
- 42G. R. Geier III, J. S. Lindsey, J. Chem. Soc. Perkin Trans. 2 2001, 677–686.
- 43A. Chapovetsky, M. Welborn, J. M. Luna, R. Haiges, T. F. Miller III, S. C. Marinescu, ACS Cent. Sci. 2018, 4, 397–404.
- 44G. Chaka, J. L. Sonnenberg, H. B. Schlegel, M. J. Heeg, G. Jaeger, T. J. Nelson, L. A. Ochrymowycz, D. B. Rorabacher, J. Am. Chem. Soc. 2007, 129, 5217–5227.
- 45I. Azcarate, C. Costentin, M. Robert, J.-M. Savéant, J. Phys. Chem. C 2016, 120, 28951–28960.
- 46M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulie, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Isci, C. P. Berlinguette, M. Robert, Nat. Commun. 2019, 10, 3602.
- 47C. Costentin, S. Drouet, M. Robert, J. M. Savéant, J. Am. Chem. Soc. 2012, 134, 11235–11242.