Artificial Water Channels: Towards Biomimetic Membranes for Desalination
Li-Bo Huang
Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorMaria Di Vincenzo
Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095 Montpellier, France
Search for more papers by this authorDr. Yuhao Li
Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Mihail Barboiu
Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095 Montpellier, France
Search for more papers by this authorLi-Bo Huang
Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorMaria Di Vincenzo
Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095 Montpellier, France
Search for more papers by this authorDr. Yuhao Li
Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Mihail Barboiu
Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275 P. R. China
Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, 34095 Montpellier, France
Search for more papers by this authorGraphical Abstract
Desalination membranes: The prime objective of Artificial Water Channels (AWC) is to explore the naturally evolved water translocation pathways and assess the possibilities of using them as the basis for ‘engineered’ desalination processes of enhanced performance. This review proposes to find an easily scalable AWC approach that could be immediately applied to desalination systems to increase their energy efficiency.
Abstract
Natural Aquaporin (AQP) channels are efficient water translocating proteins, rejecting ions. Inspired by this masterpiece of nature, Artificial Water Channels (AWCs) with controlled functional structures, can be potentially used to mimic the AQPs to a certain extent, offering flexible avenues toward biomimetic membranes for water purification. The objective of this paper is to trace the historical development and significant advancements of current reported AWCs. Meanwhile, we attempt to reveal important structural insights and supramolecular self-assembly principles governing the selective water transport mechanisms, toward innovative AWC-based biomimetic membranes for desalination.
Conflict of interest
The authors declare no conflict of interest.
References
- 1J. Eliasson, Nature 2015, 517, 6–7.
- 2M. M. Mekonnen, A. Y. Hoekstra, Science Adv. 2016, 2, e1500323.
- 3M. Barboiu, A. Gilles, Acc. Chem. Res. 2013, 46, 2814–2823.
- 4
- 4aP. Ball, Chem. Rev. 2008, 108, 74–108;
- 4bP. Ball, Proc. Natl. Acad. Sci. USA 2017, 114, 13327–13335.
- 5
- 5aK. Murata, K. Mitsuoka, T. Hirai, T. Walz, P. Agre, J. B. Heymann, A. Engel, Y. Fujiyoshi, Nature 2000, 407, 599–605;
- 5bP. Pohl, S. M. Saparov, M. J. Borgnia, P. Agre, Proc. Natl. Acad. Sci. USA 2001, 98, 9624–9629;
- 5cB. L. de Groot, H. Grubmuller, Curr. Opin. Struct. Biol. 2005, 15, 176–183.
- 6P. Agre, Angew. Chem. Int. Ed. 2004, 43, 4278–4290;
Angew. Chem. 2004, 116, 4377–4390.
10.1002/ange.200460804 Google Scholar
- 7
- 7aE. Tajkhorshid, P. Nollert, M. O. Jensen, L. J. Miercke, J. O'Connell, R. M. Stroud, K. Schulten, Science 2002, 296, 525–530;
- 7bA. Horner, C. Siligan, A. Cornean, P. Pohl, Faraday Discuss. 2018, 209, 55–65;
- 7cU. Kosinska Eriksson, G. Fischer, R. Friemann, G. Enkavi, E. Tajkhorshid, R. Neutze, Science 2013, 340, 1346–1349;
- 7dU. Zachariae, T. Kluhspies, S. De, H. Engelhart, K. Zeth, J. Biol. Chem. 2006, 281, 7413–7420;
- 7eC. I. Lynch, S. Rao, M. S. P. Samsom, Chem. Rev. 2020, 120, 10298–10335.
- 8Z.-J. Yan, D. D. Wang, Z. J. Ye, T. Fan, G. Wu, L. Y. Deng, L. Yang, B. X. Li, J. W. Liu, T. H. Ma, C. Q. Dong, Z.-T. Li, L. H. Xiao, Y. F. Wang, W. N. Wang, J.-L. Hou, J. Am. Chem. Soc. 2020, 142, 15638–15643.
- 9
- 9aC. Y. Tang, Y. Zhao, R. Wang, C. Hélix-Nielsen, A. G. Fane, Desalination 2013, 308, 34–40;
- 9bC. Y. Tang, Z. Wang, I. Petrinić, A. G. Fane, C. Hélix-Nielsen, Desalination 2015, 368, 89–105;
- 9cZ. Yang, X.-H. Ma, C. Y. Tang, Desalination 2018, 434, 37–59;
- 9dZ. Yang, H. Guo, C. Y. Tang, J. Membrane Sci. 2019, 590, 117297;
- 9eM. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Proc. Natl. Acad. Sci. USA 2007, 104, 20719–20724.
- 10
- 10aC. Hélix-Nielsen, Membranes 2018, 8, 44;
- 10bY. Lia, S. Qia, M. Tiana, W. Widjajantia, R. Wang, Desalination 2019, 467, 103–112;
- 10cY. Zhao, C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. H. Nielsen, R. Wang, X. Hu, A. G. Fane, C. Y. Tang, J. Membr. Sci. 2012, 423–424, 422–428;
- 10dY. He, H. Hoi, S. Abraham, C. D. Montemagno, J. Appl. Polym. Sci. 2017, 134, 46169;
- 10eX. Li, S. Chou, R. Wang, L. Shi, W. Fang, G. Chaitra, C. Y. Tang, J. Torres, X. Hu, A. G. Fane, J. Membr. Sci. 2015, 494, 68–77;
- 10fZ. Li, R. Valladares Linares, S. Bucs, L. Fortunato, C. H. -Nielsen, J. S. Vrouwenvelder, N. Ghaffour, T. O. Leiknes, G. Amy, Desalination 2017, 420, 208–215.
- 11S. Hernández, C. Porter, X. Zhang, Y. Weib, D. Bhattacharyya, RSC Adv. 2017, 7, 56123–56136.
- 12
- 12aY.-M. Tu, W. Song, T. Ren, Y.-X. Shen, R. Chowdhury, P. Rajapaksha, T. E. Culp, L. Samineni, C. Lang, A. Thokkadam, D. Carson, Y. Dai, A. Mukthar, M. Zhang, A. Parshin, J. N. Sloand, S. H. Medina, M. Grzelakowski, D. Bhattacharya, W. A. Phillip, E. D. Gomez, R. J. Hickey , Y. Wei, M. Kumar, Nat. Mater. 2020, 19, 347–354;
- 12bA. G. Livingston, Z. Jiang, Nat. Mater. 2020, 19, 257–258.
- 13Y. Le Duc, M. Michau, A. Gilles, V. Gence, Y. M. Legrand, A. van der Lee, S. Tingry, M. Barboiu, Angew. Chem. Int. Ed. 2011, 50, 11366–11372;
Angew. Chem. 2011, 123, 11568–11574.
10.1002/ange.201103312 Google Scholar
- 14
- 14aM. Barboiu, Angew. Chem. Int. Ed. 2012, 51, 11674–11676;
Angew. Chem. 2012, 124, 11842–11844;
10.1002/ange.201205819 Google Scholar
- 14bX. B. Hu, Z. Chen, G. Tang, J. L. Hou, Z. T. Li, J. Am. Chem. Soc. 2012, 134, 8384–8387.
- 15M. Barboiu, Chem. Commun. 2016, 52, 5657–5665.
- 16E. Licsandru, I. Kocsis, Y. X. Shen, S. Murail, Y. M. Legrand, A. van der Lee, D. Tsai, M. Baaden, M. Kumar, M. Barboiu, J. Am. Chem. Soc. 2016, 138, 5403–5409.
- 17M. Barboiu, Y. Le Duc, A. Gilles, P. A. Cazade, M. Michau, Y. M. Legrand, A. van der Lee, B. Coasne, P. Parvizi, J. Post, T. Fyles, Nat. Commun. 2014, 5, 4142.
- 18J. R. Werber, C. O. Osuji, M. Elimelech, Nat. Rev. Mater. 2016, 1, 16018.
- 19R. Sengur-Tasdemir, H. E. Tutuncu, N. Gul-Karaguler, E. Ates-Genceli, I. Koyuncu, Biomimetic Membranes as an Emerging Water Filtration Technology, Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization, (Eds.: F. N. Kök; A. A. Yildiz; F. Inci), Springer, Chem 2019, pp. 249–283.
- 20
- 20aJ. Werber, M. Elimelech, Sci. Adv. 2018, 4, eaar8266;
- 20bP. Wagh, I. C. Escobar, Environ. Prog. 2019, 38, e13215.
10.1002/ep.13215 Google Scholar
- 21Artificial Water Channels: Faraday Discuss. 209, The Royal Society of Chemistry, Cambridge, 2018.
- 22S. Murail, T. Vasiliu, A. Neamtu, M. Barboiu, F. Sterpone, M. Baaden, Faraday Discuss. 2018, 209, 125–148.
- 23
- 23aI. Kocsis, M. Sorci, H. Vanselous, S. Murail, S. E. Sanders, E. Licsandru, Y. M. Legrand, A. van der Lee, M. Baaden, P. B. Petersen, G. Belfort, M. Barboiu, Sci. Adv. 2018, 4, eaao5603;
- 23bI. Kocsis, Z. Sun, Y. M. Legrand, M. Barboiu, NPJ Clean Water 2018, 1, 13.
- 24M. Baaden, M. Barboiu, R. M. Bill, C. L. Chen, J. Davis, M. Di Vincenzo, V. Freger, M. Froba, P. A. Gale, B. Gong, C. Helix-Nielsen, R. Hickey, B. Hinds, J. L. Hou, G. Hummer, M. Kumar, Y. M. Legrand, M. Lokesh, B. Mi, S. Murail, P. Pohl, M. Sansom, Q. Song, W. Song, S. Tornroth-Horsefield, H. Vashisth, M. Vogele, Faraday Discuss. 2018, 209, 205–229.
- 25
- 25aH. Q. Zhao, W. Q. Ong, F. Zhou, X. Fang, X. Y. Chen, S. F. Y. Li, H. Su, N.-J. Chob, H. Q. Zeng, Chem. Sci. 2012, 3, 2042–2046;
- 25bH. Zhao, S. Sheng, Y. Hong, H. Zeng, J. Am. Chem. Soc. 2014, 136, 14270–14276;
- 25cW. Ma, C. Wang, J. Li, K. Zhang, Y.-J. Lu, Y. Huo, H. Zeng, Org. Biomol. Chem. 2015, 13, 10613–10619;
- 25dJ. Shen, R. J. Ye, A. Romanies, A. Roy, F. Chen, C. L. Ren, Z. Liu, H. Q. Zeng, J. Am. Chem. Soc. 2020, 142, 10050–10058.
- 26E. Kruse, N. Uehlein, R. Kaldenhoff, Genome Biol. 2006, 7, 206.
- 27
- 27aK. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne, M. S. Strano, Nat. Nanotechnol. 2017, 12, 267–273;
- 27bA. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, C. J. Burnham, Phys. Rev. Lett. 2004, 93, 035503;
- 27cY. Maniwa, K. Matsuda, H. Kyakuno, S. Ogasawara, T. Hibi, H. Kadowaki, S. Suzuki, Y. Achiba, H. Kataura, Nat. Mater. 2007, 6, 135–141.
- 28
- 28aM. Majumder, N. Chopra, R. Andrews, B. J. Hinds, Nature 2005, 438, 44;
- 28bJ. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, O. Bakajin, Science 2006, 312, 1034;
- 28cE. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, L. Bocquet, Nature 2016, 537, 210–213;
- 28dY. Yang, R. Hilmann, Y. Qi, R. Korzetz, N. Biere, D. Emmrich, M. Westphal, B. Buker, A. Hutten, A. Beyer, D. Anselmetti, A. Golzhauser, Adv. Mater. 2020, 32, 1907850.
- 29G. Hummer, J. C. Rasaiah, J. P. Noworyta, Nature 2001, 414, 188–190.
- 30A. Noy, H. G. Park, F. Fornasiero, J. K. Holt, C. P. Grigoropoulos, O. Bakajin, Nano Today 2007, 2, 22–29.
- 31Z. Siwy, F. Fornasiero, Science 2017, 357, 753.
- 32J. Geng, K. Kim, J. Zhang, A. Escalada, R. Tunuguntla, L. R. Comolli, F. I. Allen, A. V. Shnyrova, K. R. Cho, D. Munoz, Y. M. Wang, C. P. Grigoropoulos, C. M. Ajo-Franklin, V. A. Frolov, A. Noy, Nature 2014, 514, 612–615.
- 33R. H. Tunuguntla, F. I. Allen, K. Kim, A. Belliveau, A. Noy, Nat. Nanotechnol. 2016, 11, 639–644.
- 34R. H. Tunuguntla, R. Y. Henley, Y. C. Yao, T. A. Pham, M. Wanunu, A. Noy, Science 2017, 357, 792–796.
- 35V. Freger, Faraday Discuss. 2018, 209, 371–388.
- 36
- 36aV. Percec, A. E. Dulcey, V. S. Balagurusamy, Y. Miura, J. Smidrkal, M. Peterca, S. Nummelin, U. Edlund, S. D. Hudson, P. A. Heiney, H. Duan, S. N. Magonov, S. A. Vinogradov, Nature 2004, 430, 764–768;
- 36bM. S. Kaucher, M. Peterca, A. E. Dulcey, A. J. Kim, S. A. Vinogradov, D. A. Hammer, P. A. Heiney, V. Percec, J. Am. Chem. Soc. 2007, 129, 11698–11699.
- 37B. L. de Groot, D. P. Tieleman, P. Pohl, H. Grubmüller, Biophys. J. 2002, 82, 2934–2942.
- 38X. Zhou, G. Liu, K. Yamato, Y. Shen, R. Cheng, X. Wei, W. Bai, Y. Gao, H. Li, Y. Liu, F. Liu, D. M. Czajkowsky, J. Wang, M. J. Dabney, Z. Cai, J. Hu, F. V. Bright, L. He, X. C. Zeng, Z. Shao, B. Gong, Nat. Commun. 2012, 3, 949.
- 39B. Gong, Faraday Discuss. 2018, 209, 415–427.
- 40T. Ogoshi, S. Kanai, S. Fujinami, T.-A. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 2008, 130, 5022–5023.
- 41T. Ogoshi, T.-A. Yamagishi, Y. Nakamoto, Chem. Rev. 2016, 116, 7937–8002.
- 42W. Si, X.-B. Hu, X.-H. Liu, R. Fan, Z. Chen, L. Weng, J.-L. Hou, Tetrahedron Lett. 2011, 52, 2484–2487.
- 43W. Si, P. Xin, Z. T. Li, J. L. Hou, Acc. Chem. Res. 2015, 48, 1612–1619.
- 44W. Si, L. Chen, X.-B. Hu, G. Tang, Z. Chen, J.-L. Hou, Z.-T. Li, Angew. Chem. Int. Ed. 2011, 50, 12564–12568;
Angew. Chem. 2011, 123, 12772–12776.
10.1002/ange.201106857 Google Scholar
- 45L. Chen, W. Si, L. Zhang, G. Tang, Z. T. Li, J. L. Hou, J. Am. Chem. Soc. 2013, 135, 2152–2155.
- 46Y. X. Shen, W. Si, M. Erbakan, K. Decker, R. De Zorzi, P. O. Saboe, Y. J. Kang, S. Majd, P. J. Butler, T. Walz, A. Aksimentiev, J. L. Hou, M. Kumar, Proc. Natl. Acad. Sci. USA 2015, 112, 9810–9815.
- 47
- 47aY. X. Shen, W. Song, D. R. Barden, T. Ren, C. Lang, H. Feroz, C. B. Henderson, P. O. Saboe, D. Tsai, H. Yan, P. J. Butler, G. C. Bazan, W. A. Phillip, R. J. Hickey, P. S. Cremer, H. Vashisth, M. Kumar, Nat. Commun. 2018, 9, 2294;
- 47bC. Lang, D. Ye, W. Song, C. Yao, Y.-M. Tu, C. Capparelli, J. A. LaNasa, M. A. Hickner, E. W. Gomez, E. D. Gomez, R. J. Hickey, M. Kumar, ACS Nano 2019, 13, 8292–8302.
- 48Q. Li, X. Li, L. Ning, C.-H. Tan, Y. Mu, R. Wang, Small 2019, 15, 1804678.
- 49W. Song, H. Joshi, R. Chowdhury, J. S. Najem, Y. X. Shen, C. Lang, C. B. Henderson, Y. M. Tu, M. Farell, M. E. Pitz, C. D. Maranas, P. S. Cremer, R. J. Hickey, S. A. Sarles, J. L. Hou, A. Aksimentiev, M. Kumar, Nat. Nanotechnol. 2020, 15, 73–79.
- 50D. H. Zhao, J. Liu, J. W. Jiang, J. Membr. Sci. 2019, 573, 177–183.
- 51A. Noy, M. Wanunu, Nat. Nanotechnol. 2020, 15, 9–10.
- 52D. Strilets, S. Fa, A. Hardiagon, M. Baaden, T. Ogoshi, M. Barboiu, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202009219; Angew. Chem. 2020, https://doi.org/10.1002/ange.202009219.
- 53
- 53aM. Barboiu, S. Cerneaux, A. van der Lee, G. Vaughan, J. Am. Chem. Soc. 2004, 126, 3545–3550;
- 53bM. Michau, M. Barboiu, J. Mater. Chem. 2009, 19, 6124–6131;
- 53cM. Barboiu, N. Hovnanian, C. Luca, L. Cot, Tetrahedron 1999, 55, 9221–9232;
- 53dM. Barboiu, C. Guizard, N. Hovnanian, J. Palmeri, C. Reibel, C. Luca, L. Cot, J. Membr. Sci. 2000, 172, 91–103;
- 53eM. Barboiu, C. Guizard, C. Luca, N. Hovnanian, J. Palmeri, L. Cot, J. Membr. Sci. 2000, 174, 277–286.
- 54
- 54aY. M. Legrand, M. Barboiu, Chem. Rec. 2013, 13, 524–538;
- 54bM. Barboiu, Eur. J. Inorg. Chem. 2015, 1112–1125.
- 55J. E. Cadotte, US Patent 4277344 A.C, 1981.
- 56M. Di Vincenzo, A. Tiraferri, V.-E. Musteata, S. Chisca, R. Sougrat, L.-B. Huang, S. P. Nunes, M. Barboiu, Nat. Nanotechnol. 2020, https://doi.org/10.1038/s41565-020-00796-x.