Experimental and Computational Studies on Quadruply Bonded Dimolybdenum Complexes with Terminal and Bridging Hydride Ligands
Marina Pérez-Jiménez
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
These authors contributed equally to this work.
Search for more papers by this authorDr. Natalia Curado
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
These authors contributed equally to this work.
Search for more papers by this authorDr. Celia Maya
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
Search for more papers by this authorDr. Jesús Campos
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
Search for more papers by this authorProf. Dr. Eliseo Ruiz
Departament de Quimica Inorgànica and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, Marti i Franquès 1–11, 08028 Barcelona, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Santiago Álvarez
Departament de Quimica Inorgànica and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, Marti i Franquès 1–11, 08028 Barcelona, Spain
Search for more papers by this authorCorresponding Author
Prof. Ernesto Carmona
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
Search for more papers by this authorMarina Pérez-Jiménez
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
These authors contributed equally to this work.
Search for more papers by this authorDr. Natalia Curado
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
These authors contributed equally to this work.
Search for more papers by this authorDr. Celia Maya
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
Search for more papers by this authorDr. Jesús Campos
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
Search for more papers by this authorProf. Dr. Eliseo Ruiz
Departament de Quimica Inorgànica and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, Marti i Franquès 1–11, 08028 Barcelona, Spain
Search for more papers by this authorCorresponding Author
Prof. Dr. Santiago Álvarez
Departament de Quimica Inorgànica and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, Marti i Franquès 1–11, 08028 Barcelona, Spain
Search for more papers by this authorCorresponding Author
Prof. Ernesto Carmona
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de, Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC) and University of Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
Search for more papers by this authorIn memory of Professor Richard Allan Andersen, esteemed colleague and dear friend, in recognition of his leading contributions to Inorganic and Organometallic Chemistry, in particular to the chemistry of Mo–Mo multiple bonds
Graphical Abstract
Quadruply bonded dimolybdenum complexes: A variety of hydride complexes with a quadruply bonded Mo2 core are presented in his article, focusing on an unusual trans-(H)Mo≣Mo(H) central unit stabilized by amidinate ligands. The structure and thermodynamic stability of the different adducts have been investigated by experimental and computational techniques.
Abstract
This contribution focuses on complex [Mo2(H)2(μ-AdDipp2)2] (1) and tetrahydrofuran and pyridine adducts [Mo2(H)2(μ-AdDipp2)2(L)2] (1⋅thf and 1⋅py), which contain a trans-(H)Mo≣Mo(H) core (AdDipp2=HC(NDipp2)2; Dipp=2,6-iPr2C6H3). Computational studies provide insights into the coordination and electronic characteristics of the central trans-Mo2H2 unit of 1, with four-coordinate, fourteen-electron Mo atoms and ϵ-agostic interactions with Dipp methyl groups. Small size C- and N-donors give rise to related complexes 1⋅L but only one molecule of P-donors, for example, PMe3, can bind to 1, causing one of the hydrides to form a three-centered, two-electron (3c-2e) Mo-H→Mo bond (2⋅PMe3). A DFT analysis of the terminal and bridging hydride coordination to the Mo≣Mo bond is also reported, along with reactivity studies of the Mo−H bonds of these complexes. Reactions investigated include oxidation of 1⋅thf by silver triflimidate, AgNTf2, to afford a monohydride [Mo2(μ-H)(μ-NTf2)(μ-AdDipp2)2] (4), with an O,O’-bridging triflimidate ligand.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202004948-sup-0001-misc_information.pdf2.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Hieber, F. Leutert, Naturwissenschaften 1931, 19, 360–361.
- 2W. Hieber, H. Schulten, Z. Anorg. Allg. Chem. 1937, 232, 17–28.
- 3G. Wilkinson, J. M. Birmingham, J. Am. Chem. Soc. 1955, 77, 3421–3422.
- 4M. L. H. Green, L. Pratt, G. Wilkinson, J. Chem. Soc. 1958, 3916–3922.
- 5R. G. Pearson, Chem. Rev. 1985, 85, 41–49.
- 6J. R. Norton, Section 3.8 in Organotransition Metal Chemistry: From Bonding to Catalysis (Ed.: J. F. Hartwig), University Science Books, Casebound, 2010, pp. 122–146.
- 7G. S. McGrady, G. Guilera, Chem. Soc. Rev. 2003, 32, 383–392.
- 8M. Peruzzini, R. Poli, Recent Advances in Hydride Chemistry, Elsevier, New York, 2001.
- 9S. Aldridge, A. J. Downs, Chem. Rev. 2001, 101, 3305–3365.
- 10F. Maseras, A. Lledós, E. Clot, O. Einstein, Chem. Rev. 2000, 100, 601–636.
- 11G. J. Kubas, Metal Dihydrogen and Bond Complexes, Springer, New York, 2001.
- 12C. Copéret, A. Comas-Vives, M. P. Conley, D. P. Estes, A. Fedorov, V. Mougel, H. Nagae, F. Núñez-Zarur, P. A. Zhizhko, Chem. Rev. 2016, 116, 323–421.
- 13M. A. Esteruelas, L. Oro, Chem. Rev. 1998, 98, 577–588.
- 14J. R. Norton, J. Sowa, Chem. Rev. 2016, 116, 8315–8317. Introduction to a thematic issue on transition-metal hydride complexes.
- 15R. A. Jones, K. W. Chiu, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, J. Chem. Soc. Chem. Commun. 1980, 408–409.
- 16K. W. Chiu, R. A. Jones, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse, J. Chem. Soc. Dalton Trans. 1981, 1892–1897.
- 17G. Parkin, Metal–Metal Bonding in Bridging Hydride and Alkyl Compounds, in Metal–Metal Bonding, Structure and Bonding, Vol. 136 (Ed.: G. Parkin), Springer, Heidelberg, 2010, pp. 113–145.
- 18F. A. Cotton, L. M. Daniels, G. T. Jordan, C. Lin, C. A. Murillo, J. Am. Chem. Soc. 1998, 120, 3398–3401.
- 19F. A. Cotton, L. M. Daniels, I. Guimet, R. W. Henning, G. T. Jordan, C. Lin, C. A. Murillo, A. J. Schultz, J. Am. Chem. Soc. 1998, 120, 12531–12538.
- 20F. A. Cotton, J. P. Donahue, P. Huang, C. A. Murillo, D. Villagrán, Z. Anorg. Allg. Chem. 2005, 631, 2606–2612.
- 21F. A. Cotton, C. A. Murillo, Q. Zhao, Inorg. Chem. 2007, 46, 6858–6863.
- 22F. A. Cotton, P. C. W. Leung, W. J. Roth, A. J. Schultz, J. M. Williams, J. Am. Chem. Soc. 1984, 106, 117–120.
- 23E. D. Simandiras, M. Tsakiroglou, N. Psaroudakis, D. G. Liakos, K. Mertis, Inorg. Chem. 2012, 51, 258–266.
- 24M. E. García, A. Ramos, M. A. Ruiz, M. Lanfranchi, L. Marchio, Organometallics 2007, 26, 6197–6212.
- 25M. A. Álvarez, M. E. García, M. E. Martínez, A. Ramos, M. A. Ruiz, Organometallics 2009, 28, 6293–6307.
- 26N. Curado, M. Carrasco, E. Álvarez, C. Maya, R. Peloso, A. Rodríguez, J. López-Serrano, E. Carmona, J. Am. Chem. Soc. 2015, 137, 12378–12387.
- 27N. Curado, M. Carrasco, C. Maya, R. Peloso, A. Rodríguez, E. Ruiz, S. Álvarez, E. Carmona, Chem. Eur. J. 2017, 23, 194–205.
- 28M. Carrasco, N. Curado, E. Álvarez, C. Maya, R. Peloso, M. L. Poveda, A. Rodríguez, E. Ruiz, S. Álvarez, E. Carmona, Chem. Eur. J. 2014, 20, 6092–6102.
- 29Y.-C. Tsai, H.-Z. Chen, C.-C. Chang, J-S. K. Yu, G.-H. Lee, Y. Wang, T.-S. Kuo, J. Am. Chem. Soc. 2009, 131, 12534–12535.
- 30T. G. Appleton, H. C. Clark, L. E. Manzer, Coord. Chem. Rev. 1973, 10, 335–422.
- 31M. Brookhart, M. L. H. Green, G. Parkin, Proc. Natl. Acad. Sci. USA 2007, 104, 6908–6914.
- 32Y. Chen, S. Sakaki, Inorg. Chem. 2017, 56, 4011–4020.
- 33J. Green, M. L. H. Green, G. Parkin, Chem. Commun. 2012, 48, 11481–11503.
- 34S. Alvarez, Chem. Eur. J. 2020, 26, 4350–4377.
- 35R. Díaz-Torres, S. Alvarez, Dalton Trans. 2010, 39, 10742–10750.
- 36M. Carrasco, N. Curado, C. Maya, R. Peloso, A. Rodríguez, E. Ruiz, S. Alvarez, E. Carmona, Angew. Chem. Int. Ed. 2013, 52, 3227–3231;
- 37M. Pérez-Jiménez, J. Campos, J. López-Serrano, E. Carmona, Chem. Commun. 2018, 54, 9186–9189.
- 38N. V. S. Harisomayajula, H.-G. Chen, T.-S. Kuo, Y.-C. Tsai, Organometallics 2016, 35, 1534–1546.
- 39D.-Y. Lu, P. P.-Y. Chen, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2015, 54, 9106–9110;
- 40H.-Z. Chen, S.-C. Liu, C.-H. Yen, J.-S. K. Yu, Y.-J. Shieh, T.-S. Kuo, Y.-C. Tsai, Angew. Chem. Int. Ed. 2012, 51, 10342–10492;
- 41I. Mendoza, N. Curado, M. Carrasco, E. Álvarez, R. Peloso, A. Rodríguez, E. Carmona, Inorg. Chim. Acta 2015, 424, 120–128.
- 42S. T. Ahn, E. A. Bielinski, E. M. Lane, Y. Chen, W. H. Bernskoetter, N. Hazari, G. T. R. Palmore, Chem. Commun. 2015, 51, 5947–5950.
- 43K. M. Waldie, A. L. Ostericher, M. H. Reineke, A. F. Sasayama, C. P. Kubiak, ACS Catal. 2018, 8, 1313–1324.
- 44J. M. Blackwell, E. R. Sonmor, T. Scoccitti, W. E. Piers, Org. Lett. 2000, 2, 3921–3923.
- 45
- 45aR. Bau, M. H. Drabnis, Inorg. Chim. Acta 1997, 259, 27–50;
- 45bR. Bau, R. G. Teller, S. W. Kirtley, T. F. Koetzle, Acc. Chem. Res. 1979, 12, 176–183.
- 46M. Brookhart, B. Grant, A. F. Volpe, Organometallics 1992, 11, 3920–3922.
- 47R. T. Hembre, J. S. McQueen, Angew. Chem. Int. Ed. Engl. 1997, 36, 65–67;
- 48Gaussian 09, Revision D.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, 2009.
- 49C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. Sect. B 2016, 72, 171–179.
- 50A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 51A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835.
- 52R. Ahlrichs, K. May, Phys. Chem. Chem. Phys. 2000, 2, 943–945.
- 53S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 54B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, T. L. Windus, J. Chem. Inf. Model. 2019, 59, 4814–4820.
- 55T. Noro, M. Sekiya, T. Koga, Theor. Chem. Acc. 2012, 131, 1124.