Ternary Conductance Switching Realized by a Pillar[5]arene-Functionalized Two-Dimensional Imine Polymer Film
Yaru Song
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGuangyuan Feng
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorChenfang Sun
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorQiu Liang
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Lingli Wu
Medical College, Northwest Minzu University, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xi Yu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Shengbin Lei
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorProf. Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorYaru Song
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorGuangyuan Feng
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorChenfang Sun
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorQiu Liang
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Lingli Wu
Medical College, Northwest Minzu University, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Xi Yu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Shengbin Lei
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorProf. Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science &, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072 P. R. China
Search for more papers by this authorGraphical Abstract
Improving your memory: Combining the intrinsic sub-nanometer pore of pillar[5]arene with the nanometer pore structure of two-dimensional polymers provides a multichannel for Ag+ migration so that a ternary-state memristor based on the conductive filament mechanism could be designed. The obtained Ag/2DPTPAZ+TAPB/ITO devices show excellent ternary memory performance, including low threshold voltage, steady retention time, clearly distinguishable resistance states, high ON/OFF ratio, considerable ternary yield, and good thermal stability and flexibility.
Abstract
Nowadays, most manufacturing memory devices are based on materials with electrical bistability (i. e., “0” and “1”) in response to an applied electric field. Memory devices with multilevel states are highly desired so as to produce high-density and efficient memory devices. Herein, we report the first multichannel strategy to realize a ternary-state memristor. We make use of the intrinsic sub-nanometer channel of pillar[5]arene and nanometer channel of a two-dimensional imine polymer to construct an active layer with multilevel channels for ternary memory devices. Low threshold voltage, long retention time, clearly distinguishable resistance states, high ON/OFF ratio (OFF/ON1/ON2=1 : 10 : 103), and high ternary yield (75 %) were obtained. In addition, the flexible memory device based on 2DPTPAZ+TAPB can maintain its stable ternary memory performance after being bent 500 times. The device also exhibits excellent thermal stability and can tolerate a temperature as high as 300 °C. It is envisioned that the results of this work will open up possibilities for multistate, flexible resistive memories with good thermal stability and low energy consumption, and broaden the application of pillar[n]arene.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202101772-sup-0001-misc_information.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Gao, X. Yi, J. Shang, G. Liu, R. W. Li, Chem. Soc. Rev. 2019, 48, 1531–1565.
- 2R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 2009, 21, 2632–2663.
- 3A. Chen, Solid-State Electron. 2016, 125, 25–38.
- 4
- 4aT. Y. Wang, Z. Y. He, H. Liu, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, P. Zhou, D. W. Zhang, ACS Appl. Mater. Interfaces 2018, 10, 37345–37352;
- 4bL. F. Hu, W. T. Han, H. Wang, Nanotechnology. 2020, 31, 155202;
- 4cS. Roy, G. Niu, Q. Wang, Y. K. Wang, Y. J. Zhang, H. P. Wu, S. J. Zhai, P. Shi, S. N. Song, Z. T. Song, Z. G. Ye, C. Wenger, T. Schroeder, Y. H. Xie, X. J. Meng, W. B. Luo, W. Ren, ACS Appl. Mater. Interfaces 2020, 12, 10648–10656;
- 4dC. Mahata, C. Lee, Y. An, M. H. Kim, S. Bang, C. S. Kim, J. H. Ryu, S. Kim, H. Kim, B. G. Park, J. Alloy. Compd. 2020, 826, 154434.
- 5Y. Liu, M. Pharr, G. A. Salvatore, ACS Nano. 2017, 11, 9614–9635.
- 6
- 6aW. J. Sun, Y. Y. Zhao, X. F. Cheng, J. H. He, J. M. Lu, ACS Appl. Mater. Interfaces 2020, 12, 9865–9871;
- 6bS. J. Liu, P. Wang, Q. Zhao, H. Y. Yang J Wong, H. B. Sun, X. C. Dong, W. P. Lin, W. Huang, Adv. Mater. 2012, 24, 2901–2905;
- 6cC. Y. Xia, C. Liu, F. Zhou, P. Y. Gu, H. Li, J. H. He, Y. Y. Li, Q. F. Xu, J. M. Lu, Chem. Asian J. 2019, 14, 4296–4302;
- 6dA. Bandyopadhyay, A. J. Pal, Appl. Phys. Lett. 2004, 84, 999–1001;
- 6eP. C. Ooi, M. A. Haniff, M. F. Wee, B. T. Goh, C. F. Dee, M. A. Mohamed, B. Y. Majlis, Sci. Rep. 2019, 9, 1–13.
- 7
- 7aZ. J. Liu, E. Shi, Y. Wan, N. J. Li, D. Y. Chen, Q. F. Xu, H. Li, J. M. Lu, K. Q. Zhang, L. H. Wang, J. Mater. Chem. C. 2015, 3, 2033–2039;
- 7bH. Li, Q. F. Xu, N. J. Li, R. Sun, J. F. Ge, J. M. Lu, H. W. Gu, F. Yan, J. Am. Chem. Soc. 2010, 132, 5542–5543;
- 7cY. H. Hong, C. T. Poon, W. W. Yam, J. Am. Chem. Soc. 2016, 138, 6368–6371;
- 7dQ. J. Zhang, H. Li, Q. F. Xu, J. H. He, D. Y. Chen, N. J. Li, J. M. Lu, J. Mater. Chem. C. 2019, 7, 4863–4869.
- 8
- 8aK. C. Zhu, X. H. Liang, B. Yuan, M. A. Villena, C. Wen, T. Wang, S. C. Chen, F. Hui, Y. Y. Shi, M. Lanza, ACS Appl. Mater. Interfaces 2019, 11, 37999–38005;
- 8bP. H. Liu, C. C. Lin, A. Manekkathodi, L. J. Chen, Nano Energy. 2015, 15, 362–368;
- 8cV. K. Sahu, A. K. Das, R. S. Ajimsha, P. Misra, J. Phys. D 2020, 53, 225303;
- 8dZ. L. Chen, Y. Yu, L. F. Jin, Y. F. Li, Q. Y. Li, T. T. Li, J. Li, H. L. Zhao, Y. T. Zhang, H. T. Dai, J. Q. Yao, J. Mater. Chem. C. 2020, 8, 2178–2185.
- 9
- 9aC. Y. Wang, B. L. Hu, J. X. Wang, J. K. Gao, G. Li, W. W. Xiong, B. H. Zou, M. Suzuki, N. Aratani, H. Yamada, F. W. Huo, P. S. Lee, Q. C. Zhang, Chem. Asian J. 2015, 10, 116–119;
- 9bW. Wang, J. Q. Xu, H. L. Ma, X. N. Zhao, Y. Lin, C. Zhang, Z. Q. Wang, H. Y. Xu, Y. C. Liu, ACS Appl. Nano Mater. 2019, 2, 307–314;
- 9cV. K. Nagareddy, M. D. Barnes, F. Zipoli, K. T. Lai, A. M. Alexeev, M. F. Craciun, C. D. Wright, ACS Nano. 2017, 11, 3010–3021;
- 9dS. Bhattacharjee, E. Caruso, N. Mcevoy, C. O. Coileáin, K. O'Neill, L. Ansari, G. S. Duesberg, R. Nagle, K. Cherkaoui, F. Gity, P. K. Hurley, ACS Appl. Mater. Interfaces 2020, 12, 6022–6029;
- 9eB. Mukherjee, A. J. Pal, Appl. Phys. Lett. 2004, 85, 2116–2118;
- 9fM. Caironi, D. Natali, E. Canesi, A. Bianco, C. Bertarelli, G. Zerbi, M. Sampietro, Thin Solid Films 2008, 516, 7680–7684;
- 9gB. Mukherjee, A. J. Pal, Synth. Met. 2005, 155, 336–339.
- 10Y. She, Y. Peng, B. Tang, W. Hu, J. Qiu, X. S. Tang, D. H. Bao, Ceram. Int. 2018, 44, S11–S14.
- 11L. Liu, J. Dong, J. Liu, Q. Liang, Y. Song, W. Li, S. Lei, W. Hu, Small Structures 2021, 2, 2000077.
- 12
- 12aZ. J. Ren, G. D. Zhou, S. Q. Wei, Phys. Chem. Chem. Phys. 2020, 22, 2743–2747;
- 12bC. Q. Ye, Q. Peng, M. Z. Li, J. Luo, Z. M. Tang, J. Pei, J. M. Chen, Z. G. Shuai, L. Jiang, Y. L. Song, J. Am. Chem. Soc. 2012, 134, 20053–20059.
- 13C. O. Baker, B. Shedd, R. J. Tseng, A. A. Martinez-Morales, C. S. Ozkan, M. Ozkan, Y. Yang, R. B. Kaner, ACS Nano. 2011, 5, 3469–3474.
- 14X. D. Zhuang, Y. Y. Mai, D. Q. Wu, F. Zhang, X. L. Feng, Adv. Mater. 2015, 27, 403–427.
- 15
- 15aJ. Liu, F. X. Yang, L. L. Cao, B. L. Li, K. Yuan, S. B. Lei, W. P. Hu, Adv. Mater. 2019, 31, 1902264;
- 15bY. R. Song, J. Liu, W. H. Li, L. Liu, L. Yang, S. B. Lei, W. P. Hu, Chem. Commun. 2020, 56, 6356–6359.
- 16M. E. Heyde, D. Gill, R. G. Kilponen, L. Rimai, J. Am. Chem. Soc. 1971, 93, 6776–6780.
- 17
- 17aX. Z. Tian, S. Z. Yang, M. Zeng, L. F. Wang, J. K. Wei, Z. Xu, W. L. Wang, X. D. Bai, Adv. Mater. 2014, 26, 3649–3654;
- 17bZ. Xu, Y. Bando, W. L. Wang, X. D. Bai, D. Golberg, ACS Nano 2010, 4, 2515–2522.
- 18X. Y. Shu, W. Chen, D. B. Hou, Q. B. Meng, R. L. Zheng, C. J. Li, Chem. Commun. 2014, 50, 4820–4823.
- 19P. N. Murgatroyd, J. Phys. D: Appl. Phys. 1970, 3, 151–156.
- 20
- 20aA. Ahmed, A. Hayat, M. H. Nawaz, P. John, M. Nasir, J. Colloid Interface Sci. 2020, 558, 230–241;
- 20bN. Z. Xu, Y. B. Liu, W. J. Yang, J. Tang, B. W. Cai, Q. Li, J. W. Sun, K. Q. Wang, B. L. Xu, Q. T. Zhang, Y. N. Fan, ACS Appl. Mater. Interfaces 2020, 3, 11939–11946;
- 20cC. Liu, Y. M. Xiao, Q. Yang, Y. C. Wang, R. W. Lu, Y. X. Chen, C. J. Wang, H. J. Yan, Appl. Surf. Sci. 2021, 537, 148082;
- 20dM. M. Duvenhage, H. C. Swart, O. M. Ntwaeaborwa, H. G. Visser, Opt. Mater. 2013, 35, 2366–2371;
- 20eD. B. Shinde, G. Sheng, X. Li, M. Ostwal, A. H. Emwas, K. W. Huang, Z. P. Lai, J. Am. Chem. Soc. 2018, 140, 14342–14349;
- 20fJ. Y. Yue, L. Wang, Y. Ma, P. Yang, Y. Q. Zhang, Y. Jiang, B. Tang, Dalton Trans. 2019, 48, 17763–17769;
- 20gP. Wang, M. Kang, S. Sun, L. Qiang, Z. Zhang, S. Fang, Chin. J. Chem. 2014, 32, 838–843.
- 21K. Schwanitz, U. Weiler, R. Hunger, T. Mayer, W. J. Jaegermann, J. Phys. Chem. C. 2007, 111, 849–854.
- 22
- 22aT. V. Beatriceveena, A. S. R. Murthy, S. Murugesan, E. Prabhu, K. I. Gnanasekar, Angew. Chem. Int. Ed. 2020, 59, 2241–2245;
Angew. Chem. 2020, 132, 2261–2265;
10.1002/ange.201911350 Google Scholar
- 22bK. C. Martin, S. M. Villano, P. R. Mccurdy, D. C. Zapien, Langmuir. 2003, 19, 5808–5812.
- 23J. P. Costa, M. J. Pinheiro, S. A. Sousa, A. M. Rego, F. Marques, M. C. Oliveira, J. H. Leitão, N. P. Mira, M. F. Carvalho, Antibiotics 2019, 8, 144.
- 24J. Zhang, X. Xu, H. Yang, Y. K. Ho, Z. Y. Zhong, Environ. Technol. 2019, 40, 1–13.