Rhodium–Iodide Complex on a Catalytically Active SiO2 Surface for One-Pot Hydrosilylation–CO2 Cycloaddition
Kei Usui
Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama Japan
Department of Chemistry and Life Science, Yokohama National University, 240-8501 Yokohama, Japan
Search for more papers by this authorProf. Dr. Yuichi Manaka
Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama Japan
Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 963-0298 Fukushima, Japan
Search for more papers by this authorProf. Dr. Wang-Jae Chun
Graduate School of Arts and Sciences, International Christian University, 181-8585 Mitaka, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Ken Motokura
Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama Japan
Department of Chemistry and Life Science, Yokohama National University, 240-8501 Yokohama, Japan
Search for more papers by this authorKei Usui
Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama Japan
Department of Chemistry and Life Science, Yokohama National University, 240-8501 Yokohama, Japan
Search for more papers by this authorProf. Dr. Yuichi Manaka
Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama Japan
Renewable Energy Research Center, National Institute of Advanced Industrial Science and Technology, 963-0298 Fukushima, Japan
Search for more papers by this authorProf. Dr. Wang-Jae Chun
Graduate School of Arts and Sciences, International Christian University, 181-8585 Mitaka, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Ken Motokura
Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro City, 226-8502 Yokohama Japan
Department of Chemistry and Life Science, Yokohama National University, 240-8501 Yokohama, Japan
Search for more papers by this authorGraphical Abstract
A surface Rh–iodide complex for one-pot catalysis: A one-pot synthetic strategy for the hydrosilylation of olefin is developed. The hydrosilylation reaction is accelerated in the presence of a novel Rh–iodide complex developed on the surface of SiO2. The decrease in steric hindrance and electron donation from iodide to Rh promote the catalytic process.
Abstract
In this study, a novel Rh–iodide complex was synthesized through a surface reaction between an immobilized Rh cyclooctadiene complex and alkylammonium iodide (N+I−) on SiO2. In the presence of ammonium cations, the SiO2-supported Rh–iodide complex could be effectively used for the one-pot synthesis of various silylcarbonate derivatives starting from epoxy olefins, hydrosilanes, and CO2. The maximum turnover numbers (TONs) for the hydrosilylation reaction and the CO2 cycloaddition were 7600 (Rh) and 130 (N+I−), respectively. The catalyst exhibited much higher performance for hydrosilylation than solely the Rh complex on SiO2. The mechanism of the Rh-catalyzed hydrosilylation reaction and the local structure of Rh, which is affected by the co-immobilized N+I−, were investigated by using Rh and I K-edge XAFS and XPS. Analysis of the XAFS profiles indicated the presence of a Rh−I bond. The Rh unit was in its electron-rich state. Curve-fitting analysis of the Rh K-edge EXAFS profiles suggests dissociation of the cycloocta-1,5-diene (COD) ligand from the Rh center. Results from spectroscopic and kinetic analyses revealed that the high activity of the catalyst (during hydrosilylation) could be attributed to a decrease in steric hindrance and the electron-rich state of the Rh. The decrease in the steric hindrance could be attributed to the absence of COD, and the electron-rich state promoted the oxidative addition of Si−H. To the best of our knowledge, this is the first example of a one-pot silylcarbonate synthesis as well as a determination of a novel surface Rh–iodide complex and its catalysis.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202104001-sup-0001-misc_information.pdf1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews, see:
- 1aC. Copéret, A. Comas-Vives, M. P. Conley, D. P. Estes, A. Fedorov, V. Mougel, H. Nagae, F. Núnez-Zarur, P. A. Zhizhko, Chem. Rev. 2016, 116, 323–421;
- 1bC. Copéret, F. Allouche, K. W. Chan, M. P. Conley, M. F. Delley, A. Fedorov, I. B. Moroz, V. Mougel, M. Pucino, K. Searles, K. Yamamoto, P. A. Zhizhko, Angew. Chem. Int. Ed. 2018, 57, 6398–6440;
Angew. Chem. 2018, 130, 6506–6551;
10.1002/ange.201702387 Google Scholar
- 1cA. E. Fernandes, A. M. Jonas, Catal. Today 2019, 334, 173–186;
- 1dK. Motokura, S. Ding, K. Usui, Y. Kong, ACS Catal. 2021, 11, 11985–12018.
- 2
- 2aA. E. Fernandes, O. Riant, K. F. Jensen, A. M. Jonas, Angew. Chem. Int. Ed. 2016, 55, 11044–11048;
Angew. Chem. 2016, 128, 11210–11214;
10.1002/ange.201603673 Google Scholar
- 2bY. Yang, J. W. Chang, R. M. Rioux, J. Catal. 2018, 365, 43–54;
- 2cS. Muratsugu, M. Tada, Acc. Chem. Res. 2013, 46, 300–311;
- 2dM. Takabatake, A. Hashimoto, W.-J. Chun, M. Nambo, Y. Manaka, K. Motokura, JACS 2021, 1, 119–123;
- 2eB. Marciniec, K. Szubert, M. J. Potrzebowski, I. Kownacki, K. Łészczak, Angew. Chem. Int. Ed. 2008, 47, 541–544;
Angew. Chem. 2008, 120, 551–554;
10.1002/ange.200704362 Google Scholar
- 2fA. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K. Kaneda, Angew. Chem. Int. Ed. 2011, 50, 2986–2989; Angew. Chem. 2011, 123, 3042–3045;
- 2gK. Motokura, K. Saitoh, H. Noda, Y. Uemura, W.-J. Chun, A. Miyaji, S. Yamaguchi, T. Baba, ChemCatChem 2016, 8, 331–335;
- 2hP. Chandra, A. M. Jonas, A. E. Fernandes, ACS Catal. 2018, 8, 6006–6011;
- 2iP. Kasinathan, C. Lang, E. M. Gaigneaux, A. M. Jonas, A. E. Fernandes, Langmuir 2020, 36, 13743–13751;
- 2jK. Maeda, Y. Uemura, W.-J. Chun, S. S. Satter, K. Nakajima, Y. Manaka, K. Motokura, ACS Catal. 2020, 10, 14552–14559;
- 2kN. Lei, X. Zhao, B. Hou, M. Yang, M. Zhou, F. Liu, A. Wang, T. Zhang, ChemCatChem 2019, 11, 3903–3912;
- 2lK. Fujimura, M. Ouchi, M. Sawamoto, Polym. Chem. 2015, 6, 7821–7826;
- 2mP. A. Dub, J. C. Gordon, ACS Catal. 2017, 7, 6635–6655;
- 2nS. Furukawa, A. Suga, T. Komatsu, ACS Catal. 2015, 5, 1214–1222.
- 3For reviews, see:
- 3aR. Jin, D. Zheng, R. Liu, G. Liu, ChemCatChem 2018, 10, 1739–1752;
- 3bK. Kaneda, T. Mizugaki, Green Chem. 2019, 21, 1361–1389;
- 3cK. Kaneda, K. Ebitani, T. Mizugaki, K. Mori, Bull. Chem. Soc. Jpn. 2006, 79, 981–1016;
- 3dM. J. Climent, A. Corma, S. Iborra, Chem. Rev. 2011, 111, 1072–1133;
- 3eK. E. Metzger, M. M. Moyer, B. G. Trewyn, ACS Catal. 2021, 11, 110–122;
- 3fD. Jagadeesan, Appl. Catal. A 2016, 511, 59–77;
- 3gY.-B. Huang, J. Liang, X.-S. Wang, R. Cao, Chem. Soc. Rev. 2017, 46, 126–157.
- 4
- 4aS. Wang, J. He, Z. An, Chem. Commun. 2017, 53, 8882–8885;
- 4bX. Shu, R. Jin, Z. Zhao, T. Cheng, G. Liu, Chem. Commun. 2018, 54, 13244–13247;
- 4cS. Yang, J. He, Chem. Commun. 2012, 48, 10349–10351;
- 4dZ. An, Y. Dai, Y. Jiang, J. He, Asian J. Org. Chem. 2019, 8, 1539–1547;
- 4eD. Xia, T. Cheng, W. Xiao, K. Liu, Z. Wang, G. Liu, H. Li, W. Wang, ChemCatChem 2013, 5, 1784–1789;
- 4fM. Honda, S. Sonehara, H. Yasuda, Y. Nakagawa, K. Tomishige, Green Chem. 2011, 13, 3406–3413;
- 4gT. Yatabe, X. Jin, K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 2015, 54, 13302–13306;
Angew. Chem. 2015, 127, 13500–13504;
10.1002/ange.201507134 Google Scholar
- 4hF. Zhang, H. Jiang, X. Li, X. Wu, H. Li, ACS Catal. 2014, 4, 394–401;
- 4iS. Sobhani, F. Zarifi, J. Skibsted, New J. Chem. 2017, 41, 6219–6225;
- 4jK. Motokura, N. Ozawa, R. Sato, Y. Manaka, W.-J. Chun, ChemCatChem 2021, 13, 2915–2921;
- 4kP. V. Dau, S. M. Cohen, Inorg. Chem. 2015, 54, 3134–3138;
- 4lR. S. Malkar, G. D. Yadav, Inorg. Chim. Acta. 2019, 490, 282–293;
- 4mM. J. Climent, A. Corma, S. Iborra, M. Mifsud, A. Velty, Green Chem. 2010, 12, 99–107.
- 5Epoxy olefins are widely known as biomaterial precursors;
- 5aK. B. Sharpless, J. Am. Chem. Soc. 1970, 92, 6999–7001;
- 5bE. E. van Tamelen, J. G. Carlson, R. K. Russell, S. R. Zawacky, J. Am. Chem. Soc. 1981, 103, 4615–4616;
- 5cS. P. Tanis, Y. H. Chuang, D. B. Head, J. Org. Chem. 1988, 53, 4929–4938.
- 6Selected examples of silylcarbonate's application for electrochemistry:
- 6aJ. Wang, T. Yong, J. Yang, C. Ouyang, L. Zhang, RSC Adv. 2015, 5, 17660–17666;
- 6bU. H. Choi, S. Liang, M. V. O'Reilly, K. I. Winey, J. Runt, R. H. Colby, Macromolecules 2014, 47, 3145–3153;
- 6cK. Matsumoto, M. Kakehashi, H. Ouchi, M. Yuasa, T. Endo, Macromolecules 2016, 49, 9441–9448;
- 6dM. Philipp, R. Bhandary, F. J. Groche, M. Schönhoff, B. Rieger, Electrochim. Acta 2015, 173, 687–697;
- 6eM. Philipp, R. Bernhard, H. A. Gasteiger, B. Riegera J. Electrochem. Soc. 2015, 162, A1319-A11326.
- 7K. Usui, K. Miyashita, K. Maeda, Y. Manaka, W.-J. Chun, K. Inazu, K. Motokura, Org. Lett. 2019, 21, 9372–9376.
- 8B. Marciniec, K. Szubert, R. Fiedorowa, I. Kownacki, M. J. Potrzebowski, M. Dutkiewicza, A. Franczyka, J. Mol. Catal. A 2009, 310, 9–16.
- 9
- 9aJ. C. Calabrese, T. Herskovitz, J. B. Kinney, J. Am. Chem. Soc. 1983, 105, 5914–5915;
- 9bH. A. C. M. Hendrickx, A. P. J. M. Jongenelis, B. E. Nieuwenhuys, Surf. Sci. 1985, 154, 503–523.
- 10S. Ding, Y. Guo, M. J. Hülsey, B. Zhang, H. Asakura, L. Liu, Y. Han, M. Gao, J. Hasegawa, B. Qiao, T. Zhang, N. Yan, Chem 2019, 5, 3207–3219.
- 11
- 11aK. Motokura, K. Maeda, W.-J. Chun, ACS Catal. 2017, 7, 4637–4641;
- 11bK. Maeda, K. Motokura, J. Jpn. Pet. Inst. 2020, 63, 1–9;
- 11cK. Maeda, Y. Uemura, M. Kim, K. Nakajima, S. Tanaka, W.-J. Chun, K. Motokura, K. Maeda, J. Phys. Chem. C 2019, 123, 14556–14563.
- 12D. R. Denley, R. H. Raymond, S. C. Tang, J. Catal. 1984, 87, 414–423.
- 13M. D. Coey, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1970, 26, 1876–1877.
- 14Y. Abe, K. Kato, M. Kawamura, K. Sasaki, Surf. Sci. Spectra 2001, 8, 117–125.
- 15
- 15aK. L. Luska, K. Z. Demmans, S. A. Stratton, A. Moores, Dalton Trans. 2012, 41, 13533–13540;
- 15bC. P. Mehnert, Chem. Eur. J. 2005, 11, 50–56;
- 15cF. Shi, Q. Zhang, D. Li, Y. Deng, Chem. Eur. J. 2005, 11, 5279–5288.
- 16
- 16aA. L. Maksimov, S. N. Kuklin, Y. S. Kardasheva, E. A. Karakhanov, Pet. Chem. 2013, 53, 157–163;
- 16bJ. D. Aiken III, Y. Lin, R. G. Finke, J. Mol. Catal. A 1996, 114, 29–51;
- 16cV. Cimpeanu, M. Kočevar, V. I. Parvulescu, W. Leitner, Angew. Chem. Int. Ed. 2009, 26, 1085–1088;
Angew. Chem. 2009, 121, 1105–1108;
10.1002/ange.200803773 Google Scholar
- 16dC. Zhao, H. Wang, N. Yan, C. Xiao, X. Mu, P. J. Dyson, Y. Kou, J. Catal. 2007, 250, 33–40.
- 17
- 17aT. Takahashi, T. Watahiki, S. Kitazume, H. Yasuda, T. Sakakura, Chem. Commun. 2006, 11, 1664–1666;
- 17bK. Motokura, S. Itagaki, Y. Iwasawa, A. Miyaji, T. Baba, Green Chem. 2009, 11, 1876–1880;
- 17cL. Han, H.-J. Choi, S.-J. Choi, B. Liu, D.-W. Park, Green Chem. 2011, 13, 1023–1028;
- 17dS. Baj, T. Krawczyk, K. Jasiak, A. Siewniak, M. Pawlyta, Appl. Catal. 2014, 488, 96–102;
- 17eL.-F. Xiao, F.-W. Li, J.-J. Peng, C.-G. Xia, J. Mol. Catal. A 2006, 253, 265–269;
- 17fA. R. Hajipour, Y. Heidari, G. Kozehgary, RSC Adv. 2015, 5, 22373–22379;
- 17gB. Song, L. Guo, R. Zhang, X. Zhao, H. Gan, C. Chen, J. Chen, W. Zhu, Z. Hou, J. CO2 Util. 2014, 6, 62–68;
- 17hH. S. Kim, J. J. Kim, H. Kim, H. G. Jang, J. Catal. 2003, 220, 44–46.