Ni-Catalyzed Cross-Coupling of 2-Iodoglycals and 2-Iodoribals with Grignard Reagents: A Route to 2-C-Glycosides and 2’-C-Nucleosides
Dr. Peter Polák
Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005 Paris, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Janine Cossy
Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005 Paris, France
Search for more papers by this authorDr. Peter Polák
Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005 Paris, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Janine Cossy
Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, PSL University, CNRS, 10 rue Vauquelin, 75005 Paris, France
Search for more papers by this authorGraphical Abstract
The importance of O/N-glycosides as biologically active compounds cannot be overstated. This study is focused on the functionalization of glycals and ribals at the C2 position with alkyl, vinyl, aryl, heteroaryl and strained ring substituents. The functionalized glycals and ribals were transformed into 2-C-deoxyglycosides and 2’-C-deoxynucleosides. The application to the synthesis of an analogue of cladribine and clofarabine is described.
Abstract
The synthesis of 2-C-glycals and 2-C-ribals was achieved in good yields using a nickel-catalyzed cross-coupling between 2-iodoglycals and 2-iodoribal respectively and Grignard reagents. The prepared 2-C-glycals and ribals were then transformed into 2-C-2-deoxyglycosides, 2-C-diglycosides and 2’-C-2’-deoxynucleosides. The developed method was applied to the synthesis of a 2-chloroadenine
2’-deoxyribonucleoside – a structural analogue of cladribine (Mavenclad®, Leustatin®) and clofarabine (Clolar®, Evoltra®), two compounds used in the treatment of relapsing-remitting multiple sclerosis and hairy cell leukemia.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
chem202104311-sup-0001-misc_information.pdf21.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. M. Galmarini, J. R. Mackey, C. Dumontet, Lancet Oncol. 2002, 3, 415–424;
- 1bR. J. Geraghty, M. T. Aliota, L. F. Bonnac, Viruses 2021, 13, 677–688;
- 1cM. Guinan, C. Benckendorff, M. Smith, G. J. Miller, Molecules 2020, 25, 2050–2074;
- 1dJ. M. Thomson, I. L. Lamont, Front. Microbiol. 2019, 10, 952–962.
- 2M. Rodriguez-Guerra, P. Jadhav, T. J. Vittorio, Drugs Context 2021, 10, 2020–10–3.
- 3K. L. Seley-Radtke, M. K. Yates, Antiviral Res. 2018, 154, 66–86.
- 4
- 4aL. K. McKenzie, R. El-Khoury, J. D. Thorpe, M. J. Damha, M. Hollenstein, Chem. Soc. Rev. 2021, 50, 5126–5164;
- 4bA. Khvorova, J. K. Watts, Nat. Biotechnol. 2017, 35, 238–248;
- 4cK. Duffy, S. Arangundy-Franklin, P. Holliger, BMC Biol. 2020, 18, 112–125.
- 5
- 5aY. Yang, B. Yu, Chem. Rev. 2017, 117, 12281–12356;
- 5bJ. Ghouilem, M. de Robichon, F. Le Bideau, A. Ferry, S. Messaoudi, Chem. Eur. J. 2021, 27, 491–511;
- 5cH. Liao, J. Ma, H. Yao, X. W. Liu, Org. Biomol. Chem. 2018, 16, 1791–1806.
- 6
- 6aA. Bordessa, A. Ferry, N. Lubin-Germain, J. Org. Chem. 2016, 81, 12459–12465;
- 6bM. de Robichon, A. Bordessa, N. Lubin-Germain, A. Ferry, J. Org. Chem. 2019, 84, 3328–3339;
- 6cW. Fan, Y. Chen, Q. Lou, L. Zhuang, Y. Yang, J. Org. Chem. 2018, 83, 6171–6177;
- 6dH. A. Esteves, M. P. Darbem, D. C. Pimenta, H. A. Stefani, Eur. J. Org. Chem. 2019, 2019, 7384–7388;
- 6eJ. Liu, P. Han, J.-X. Liao, Y.-H. Tu, H. Zhou, J.-S. Sun, J. Org. Chem. 2019, 84, 9344–9352;
- 6fB. Wang, D. C. Xiong, X. S. Ye, Org. Lett. 2015, 17, 5698–5701;
- 6gM. C. Belhomme, T. Poisson, X. Pannecoucke, Org. Lett. 2013, 15, 3428–3431;
- 6hI. Cobo, M. I. Matheu, S. Castillon, O. Boutureira, B. G. Davis, Org. Lett. 2012, 14, 1728–1731.
- 7For selected examples see:
- 7aT. Hayashi, M. Konishi, M. Kumada, Tetrahedron Lett. 1979, 21, 1871–1874;
- 7bA. L. Krasovskiy, S. Haley, K. Voigtritter, B. H. Lipshutz, Org. Lett. 2014, 16, 4066–4069; and the references within;
- 7cK. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 1972, 94, 4374–4376;
- 7dX. Zhang, Z. Wang, Synlett 2013, 24, 2081–2084;
- 7eA. Moyeux, G. Cahiez, Chem. Rev. 2010, 110, 1435–1462 and the references within;
- 7fM. Tamura, J. Kochi, J. Am. Chem. Soc. 1971, 93, 1487–1489;
- 7gG. Cahiez, G. Lefèvre, A. Moyeux, O. Guerret, E. Gayon, L. Guillonneau, N. Lefèvre, Q. Gu, E. Zhou, Org. Lett. 2019, 21, 2679–2683; and the references within.
- 8T. Kohei, K. Sumitani, Y. Kiso, M. Zembayashi, A. Fujioka, S. Kodama, I. Nakajima, A. Minato, M. Kumada, Bull. Chem. Soc. Jpn. 1976, 49, 1958–1969.
- 9Only one example of the cross-coupling reaction between 5-bromo-3,4-dihydro-2H-pyran and a Grignard reagent catalyzed by transition metals exists in the literature, see: C. Malanga, S. Mannucci, Tetrahedron Lett. 2001, 42, 2023–2025. Application of their conditions (NiCl2dppe, EtMgBr, THF, 60 °C) to tri-O-benzyl-2-bromo-D-glucal resulted in incomplete conversion of the starting material and a mixture of the cross-coupling product 2 c (25 %) and the reduction product 3 (15 %). The yields were determined by 1H NMR.
- 10The non-formation of 2 h is probably due to the formation of a nickel π-allyl complex, which is detrimental to the cross-coupling reaction.
- 11For the preparation of 1 d see Supporting Information.
- 12The products 7 a and 7 b were contaminated by 4–6 % of the di-O-TBS−D-ribal (7, R=H), which could not be separated due to the same Rf (see Supporting Information).
- 13
- 13aT. Cañeque, S. Müller, R. Rodriguez, Nat. Chem. Rev. 2018, 2, 202–215;
- 13bJ. P. Meyer, P. Adumeau, J. S. Lewis, B. M. Zeglis, Bioconjugate Chem. 2016, 27, 2791–2807.
- 14The structure was confirmed by NOESY experiment.
- 15
- 15aV. Bolitt, C. Mioskowski, S. G. Lee, J. R. Falck, J. Org. Chem. 2002, 55, 5812–5813;
- 15bM. Y. Hsu, Y. P. Liu, S. Lam, S. C. Lin, C. C. Wang, Beilstein J. Org. Chem. 2016, 12, 1758–1764;
- 15cX. K. Cui, M. Zhong, X. B. Meng, Z. J. Li, Carbohydr. Res. 2012, 358, 19–22.
- 16
- 16aC. Palo-Nieto, A. Sau, R. Jeanneret, P. A. Payard, A. Salame, M. B. Martins-Teixeira, I. Carvalho, L. Grimaud, M. C. Galan, Org. Lett. 2020, 22, 1991–1996;
- 16bM. Kumar, T. R. Reddy, A. Gurawa, S. Kashyap, Org. Biomol. Chem. 2020, 18, 4848–4862.
- 17G. A. Bradshaw, A. C. Colgan, N. P. Allen, I. Pongener, M. B. Boland, Y. Ortin, E. M. McGarrigle, Chem. Sci. 2019, 10, 508–514.
- 18
- 18aM. Liu, K. M. Liu, D. C. Xiong, H. Zhang, T. Li, B. Li, X. Qin, J. Bai, X. S. Ye, Angew. Chem. Int. Ed. 2020, 59, 15204–15208;
- 19
- 19aM. T. Bilodeau, S. J. Danishefsky, Angew. Chem. Int. Ed. 1996, 35, 1380–1419;
- 19bW. Xu, H. Yang, Y. Liu, Y. Hua, B. He, X. Ning, Z. Qin, H.-M. Liu, F.-W. Liu, Synthesis 2017, 49, 3686–3691;
- 19cC. S. Garton, N. K. DeRose, D. Dominguez, M. L. Turbi-Henderson, A. L. Lehr, A. D. Padilla, S. D. Twining, S. Casas, C. O. Alozie, A. L. Gucwa, M. R. Elshaer, M. De Castro, Molecules 2021, 26, 3742–3755;
- 19dE. M. Reid, E. S. Vigneau, S. S. Gratia, C. H. Marzabadi, M. De Castro, Eur. J. Org. Chem. 2012, 2012, 3295–3303;
- 19eS. Luisier, P. Silhar, C. J. Leumann, Nucleic Acids Symp. Ser. 2008, 52, 581–582.
- 20
- 20aR. L. Halcomb, S. J. Danishefsky, J. Am. Chem. Soc. 1989, 111, 6661–6666;
- 20bK. Chow, S. J. Danishefsky, J. Org. Chem. 1990, 55, 4211–4214;
- 20cF. P. Boulineau, A. Wei, Org. Lett. 2002, 4, 2281–2283;
- 20dA. M. Downey, R. Pohl, J. Roithová, M. Hocek, Chem. Eur. J. 2017, 23, 3910–3917.
- 21T. Wan, L. Capaldo, G. Laudadio, A. V. Nyuchev, J. A. Rincón, P. García-Losada, C. Mateos, M. O. Frederick, M. Nuño, T. Noël, Angew. Chem. Int. Ed. 2021, 60, 17893–17897;
- 22
- 22aK. Haraguchi, K. Konno, K. Yamada, Y. Kitagawa, K. T. Nakamura, H. Tanaka, Tetrahedron 2010, 66, 4587–4600;
- 22bP. Pal, P. Singh, B. Kumar, H. M. Guniyal, A. K. Shaw, Tetrahedron: Asymmetry 2011, 22, 992–999.
- 23The reaction of 2 a with 16 in the presence of NBS instead of NIS, under otherwise identical conditions, resulted in the formation of 17 α (Br instead of I) in 8 % isolated yield.
- 24The removal of the iodide failed under radical conditions at elevated temperature (n-Bu3SnH, AIBN, toluene, 120 °C) as rapid decomposition of the starting material 17 α was observed within 4 h.
- 25
- 25aM. Evich, A. M. Spring-Connell, M. W. Germann, Heterocycl. Commun. 2017, 23, 155–165;
- 25bM. Meanwell, S. M. Silverman, J. Lehmann, B. Adluri, Y. Wang, R. Cohen, L.-C. Campeau, R. Britton, Science 2020, 369, 725–730.
- 26
- 26aA. Zhou, Q. Han, H. Song, J. Zi, J. Ma, Z. Ge, Drug Des. Dev. Ther. 2019, 13, 1867–1878;
- 26bE. D. Deeks, CNS Drugs 2018, 32, 785–796;
- 26cD. S. Sigal, H. J. Miller, E. D. Schram, A. Saven, Blood 2010, 116, 2884–2896;
- 26dH. Tran, D. Yang, Ann. Pharmacother. 2012, 46, 89–96.
- 27The reaction of 7 b with sodium salt of dichloropurine in the presence of NIS, under similar conditions resulted in the formation of a partially separable mixture of four isomers of 24 in 65 % combined yield. The ratio of N9–24 β/N7–24 β/N9–24 α/N7–24 α was 1:0.14:0.75:0.43.
- 28
- 28aThe selectivity of nucleophilic addition to glycals is highly dependent on the nature of the saccharide structure, protecting groups, nucleophiles, and solvent (see ref. 19);
- 28bT. J. Meyerhoefer, S. Kershaw, N. Caliendo, S. Eltayeb, E. Hanawa-Romero, P. Bykovskaya, V. Huang, C. H. Marzabadi, M. De Castro, Eur. J. Org. Chem. 2015, 11, 2457–2462.
- 29
- 29aL. Alberch, G. Cheng, S. K. Seo, X. Li, F. P. Boulineau, A. Wei, J. Org. Chem. 2011, 76, 2532–2547;
- 29bG. Chemg, F. P. Boulineau, S. T. Liew, Q. Shi, P. G. Wenthold, A. Wei, Org. Lett. 2006, 8, 4545–4548.
- 30Nucleophilic additions involving glycals in the presence of NIS proceeding through intermediates defying the “majority rule” are known to exist:
- 30aJ. Thiem, H. Karl, J. Schwentner, Synthesis 1978, 9, 696–697;
- 30bD. Horton, W. Priebe, M. Sznaidman, Carbohydr. Res. 1990, 205, 71–86;
- 30cK. Suzuki, A. G. Sulikowski, W. R. Friesen, S. J. Danishefsky, J. Am. Chem. Soc. 1990, 112, 8895–8902.